workers =1batch =8model = YOLO(abs_path('./weights/yolov5nu.pt', path_type='current'), task='detect')# 加载预训练的YOLOv8模型# model = YOLO('./weights/yolov5.yaml', task='detect').load('./weights/yolov5nu.pt') # 加载预训练的YOLOv8模型# Training.results = model.train(# 开...
另外,为了能部署在手机Android平台,本人对YOLOv5s进行了模型轻量化,开发了一个轻量级的版本,yolov5s05,在普通Android手机上可以达到实时的手势识别效果,CPU(4线程)约30ms左右,GPU约25ms左右 ,基本满足业务的性能需求。 先展示一下手势识别Demo视频效果: 【源码下载】 基于YOLOv5的手势识别系统(含手势识别...
代码的核心逻辑是首先设置好训练环境,然后加载预训练的YOLO模型,并在此基础上进行进一步的训练以适应我们的特定任务——在这里是石头剪刀布手势识别。这个过程涉及到许多细节,包括数据路径的设置、模型参数的配置以及训练过程的初始化。 首先,代码通过import语句导入必要的Python包,包括操作系统接口os、PyTorch库torch、YAML...
我们将使用 PyQt5 创建一个简单的 GUI 来加载和运行 YOLOv5 模型进行实时预测。 主窗口代码main_window.py []importsysimportcv2importnumpyasnpfromPyQt5.QtWidgetsimportQApplication,QMainWindow,QLabel,QPushButton,QVBoxLayout,QWidget,QFileDialogfromPyQt5.QtGuiimportQImage,QPixmapfromPyQt5.QtCoreimportQt,QTim...
1.基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的铁轨缺陷检测系统(Python+PySide6界面+训练代码)2024-03-152.基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的稻田虫害检测系统详解(深度学习+Python代码+UI界面+训练数据集)2024-03-15 3.基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的石头剪刀布手势识别系统详解(深度学习模型+UI界面代码+训练...
常见手势识别系统 @思绪无限 基于YOLOv8、YOLOv7、YOLOv6、YOLOv5模型 (Python代码+UI界面+训练数据集)目标检测、机器视觉实战 #深度学习 #目标检测 #ui界面设计 #yolov8 - 思绪无限于20240327发布在抖音,已经收获了698个喜欢,来抖音,记录美好生活!
我们的代码首先导入了必要的模块,包括操作系统接口模块os、PyTorch深度学习框架以及yaml模块,用于处理配置文件。我们使用了ultralytics中的YOLO类,这是一个用于构建、训练和部署YOLO模型的强大工具。在开始编写主要的训练脚本之前,代码首先设置了训练所需的一些参数,如工作进程数和批处理大小,并且确定了数据集的路径。我们...
我们的代码首先导入了必要的模块,包括操作系统接口模块os、PyTorch深度学习框架以及yaml模块,用于处理配置文件。我们使用了ultralytics中的YOLO类,这是一个用于构建、训练和部署YOLO模型的强大工具。在开始编写主要的训练脚本之前,代码首先设置了训练所需的一些参数,如工作进程数和批处理大小,并且确定了数据集的路径。我们...
代码的核心逻辑是首先设置好训练环境,然后加载预训练的YOLO模型,并在此基础上进行进一步的训练以适应我们的特定任务——在这里是石头剪刀布手势识别。这个过程涉及到许多细节,包括数据路径的设置、模型参数的配置以及训练过程的初始化。 首先,代码通过import语句导入必要的Python包,包括操作系统接口os、PyTorch库torch、YAML...
代码下载链接 7. 结论与未来工作 摘要:本文深入研究了基于YOLOv8/v7/v6/v5的常见手势识别,核心采用YOLOv8并整合了YOLOv7、YOLOv6、YOLOv5算法,进行性能指标对比;详述了国内外研究现状、数据集处理、算法原理、模型构建与训练代码,及基于Streamlit的交互式Web应用界面设计。在Web网页中可以支持图像、视频和实时摄像头进...