YOLO v4在MS COCO数据集上实现了实时检测的最优表现,在Tesla V100上以65 FPS运行,AP达到43.5%。为了获得这些结果,YOLO v4结合了一些功能,例如加权残差连接(WRC)、跨阶段部分连接(CSP)、交叉小批量标准化(CmBN)、自对抗训练(SAT)和Mish激活,Mosaic数据增强,DropBlock正则化和CIoU损失。稍后将讨论这些功能。 将YOLOv...
和Leaky_relu激活函数的图形对比如下: Yolov4的Backbone中都使用了Mish激活函数,而后面的网络则还是使用leaky_relu函数。 Yolov4作者实验测试时,使用CSPDarknet53网络在ImageNet数据集上做图像分类任务,发现使用了Mish激活函数的TOP-1和TOP-5的精度比没有使用时都略高一些。 因此在设计Yolov4目标检测任务时,主干网络Ba...
1、其一是将DarknetConv2D的激活函数由LeakyReLU修改成了Mish,卷积块由DarknetConv2D_BN_Leaky变成了DarknetConv2D_BN_Mish。 Mish函数的公式与图像如下: 2、其二是将resblock_body的结构进行修改,使用了CSPnet结构。此时YOLOV4当中的Darknet53被修改成了CSPDarknet53。 CSPnet结构并不算复杂,就是将原来的残差块的...
和Leaky_relu激活函数的图形对比如下:Yolov4的Backbone中都使用了Mish激活函数,而后面的网络则还是使用leaky_relu函数。Yolov4作者实验测试时,使用CSPDarknet53网络在ImageNet数据集上做图像分类任务,发现使用了Mish激活函数的TOP-1和TOP-5的精度比没有使用时都略高一些。