GitHub is where people build software. More than 150 million people use GitHub to discover, fork, and contribute to over 420 million projects.
Object Detection using YOLO11 on custom dataset. Contribute to donhuvy/YOLO11-Custom-Object-Detection development by creating an account on GitHub.
物流快递箱条码识别系统源码和数据集:改进yolo11-SWC. Contribute to Qunmasj-Vision-Studio/version2130 development by creating an account on GitHub.
git clone https://github.com/bhaskrr/traffic-sign-detection-using-yolov11.git Navigate to the root directory of the project: cd path/to/the/project Install dependencies: pip install -r requirements.txt Run the scripts To process images python3 process_image.py To process videos python3 proc...
YOLO11源码地址:https://github.com/ultralytics/ultralytics Ultralytics YOLO11是一款尖端的、最先进的模型,它在之前YOLO版本成功的基础上进行了构建,并引入了新功能和改进,以进一步提升性能和灵活性。YOLO11设计快速、准确且易于使用,使其成为各种物体检测和跟踪、实例分割、图像分类以及姿态估计任务的绝佳选择。
YOLO目标检测算法是一种端到端的One-Slage 目标检测算法,其核心思想是将图像按区域分块进行预测。YOLO将输入图像按照32x32的大小划分成若干个网格,例如416x416的图像将被划分为13x13个网格。当目标物体的中心位于某个网格内时,该网格就会负责输出该物体的边界框和类别置信度。每个网格可以预测多个边界框和多个目标类...
YOLO11源码地址:https://github.com/ultralytics/ultralytics Ultralytics YOLO11是一款尖端的、最先进的模型,它在之前YOLO版本成功的基础上进行了构建,并引入了新功能和改进,以进一步提升性能和灵活性。YOLO11设计快速、准确且易于使用,使其成为各种物体检测和跟踪、实例分割、图像分类以及姿态估计任务的绝佳选择。
10.2 部分改进模块原理讲解(完整的改进原理见上图和技术博客链接)【如果此小节的图加载失败可以通过CSDN或者Github搜索该博客的标题访问原始博客,原始博客图片显示正常】 ### 可变性卷积DCN简介卷积神经网络由于其构建模块中固定的几何结构,本质上受限于模型几何变换。为了提高卷积神经网络的转换建模能力,《Deformable ...
饮料品牌瓶盖识别系统源码和数据集:改进yolo11-RVB-EMA. Contribute to Qunmasj-Vision-Studio/test197 development by creating an account on GitHub.
( name="DCNv3", # 包名 version="1.1", # 版本号 author="InternImage", # 作者 url="https://github.com/OpenGVLab/InternImage", # 项目链接 description="PyTorch Wrapper for CUDA Functions of DCNv3", # 描述 packages=find_packages(exclude=("configs", "tests")), # 查找包,排除 configs ...