传统的物体检测模型,如YOLO和Faster R-CNN,通常依赖于NMS(非最大抑制)来从多个重叠的边界框中选择最优框。NMS过程虽然有效,但会增加额外的计算开销,降低检测速度。RT-DETR的最大创新之一是完全去除了NMS步骤,采用了端到端的Transformer架构,直接在输出中生成最终的物体检测结果。通过这种方式,RT-DETR减少了计算复杂...
RT-DETR(Real-TimeDEtectionTRansformer) ,一种基于 DETR 架构的实时端到端检测器,其在速度和精度上取得了 SOTA 性能 为什么会出现: YOLO 检测器有个较大的待改进点是需要 NMS 后处理,其通常难以优化且不够鲁棒,因此检测器的速度存在延迟。为避免该问题,我们将目光移向了不需要 NMS 后处理的 DETR,一种基于 Tr...
首先纯模型也就是去NMS后的速度上,RT-DETR由于轻巧的设计也已经快于大部分YOLO,然后实际端到端应用的时候还是得需要加上NMS的...嗯等等,DETR类检测器压根就不需要NMS,所以一旦端到端使用,RT-DETR依然轻装上阵一路狂奔,而YOLO系列就需要带上NMS负重前行了,NMS参数设置的不好比如为了拉高recall就会严重拖慢YOLO系列...
4.4、Scaled RT-DETR 为了提供RT-DETR的可扩展版本,将ResNet网替换为HGNetv2。使用depth multiplier和width multiplier将Backbone和混合编码器一起缩放。因此,得到了具有不同数量的参数和FPS的RT-DETR的两个版本。 对于混合编码器,通过分别调整CCFM中RepBlock的数量和编码器的嵌入维度来控制depth multiplier和width multi...
RT-DETR-L在COCO val2017上实现了53.0%的AP,在NVIDIA Tesla T4 GPU上实现了114 FPS,而RT-DETR-X实现了54.8%的AP和74 FPS,在速度和精度方面都优于相同规模的所有YOLO检测器。因此,RT-DETR成为了一种用于实时目标检测的新的SOTA,如图1所示。 此外,提出的RT-DETR-R50实现了53.1%的AP和108 FPS,而RT-DETR-R1...
RT-DETR由百度开发,是一款端到端目标检测器,在保持高精度的同时提供实时性能。它利用ViT的强大特性,通过解耦尺度内交互和跨尺度融合来有效处理多尺度特征。 RT-DETR具有很强的适应性,支持使用不同的解码器层灵活调整推理速度,而无需重新训练。该模型在具有TensorRT的CUDA等加速后端方面表现出色,优于许多其他实时目标检...
DETR目标检测算法源码解读:YOLO卷不动了,来试试DETR!Transformer跨界CV做检测的开山之作! 840 -- 4:40 App RT-DETR改进前后数据-并且与YOLOv7对比 2090 -- 15:07 App 深入理解DETR 系列及改进下【Efficient DETR】 1251 1 5:22 App RT- DETR| 6、decoder 整体网络结构 825 3 13:22 App RT-DETR...
RT-DETR,全称为Real-Time DEtection TRansformer,是一种基于Transformer的目标检测器。与YOLO等传统检测器不同,RT-DETR采用了Transformer结构,使得其在处理图像时可以更好地捕捉全局信息,从而提高检测的精度。 最近,RT-DETR在COCO val2017数据集上取得了令人瞩目的成绩。其中,RT-DETR-L实现了53.0%的AP(平均精度),同时...
随着RT-DETR的出现,目标检测领域迎来了新的里程碑。在速度和精度上全面超越YOLOv8,RT-DETR以114FPS实现54.8AP,引领目标检测进入超快时代。
C#部署yolov8官方提供rtdetr的模型,首先转成Onnx模型然后即可调用。测试环境:vs2019netframework4.7.2onnxruntime1.16.3opencvsharp==4.8.0, 视频播放量 469、弹幕量 0、点赞数 1、投硬币枚数 0、收藏人数 6、转发人数 0, 视频作者 未来自主研究中心, 作者简介 未来自主研