3.数据集格式转换 3.1标记后的数据格式如下 3.2 生成适合yolo格式的关键点数据集 3.3生成的yolo数据集如下 4.手部关键点训练 4.1 新建data/hand_keypoint.yaml 4.2修改ultralytics/cfg/models/11/yolo11-pose.yaml 4.3默认参数开启训练 4.4 训练结果分析 本文解决什么问题:教会你如何用自己的数据集转换成对应格式...
Ultralytics YOLO11是一款尖端的、最先进的模型,它在之前YOLO版本成功的基础上进行了构建,并引入了新功能和改进,以进一步提升性能和灵活性。YOLO11设计快速、准确且易于使用,使其成为各种物体检测和跟踪、实例分割、图像分类以及姿态估计任务的绝佳选择。 pose官方在COCO数据集上做了更多测试: 结构图如下: 2.如...
pip install ultralytics from ultralytics import YOLO # Load a model model = YOLO('yolov8n-pose.pt') # load a pretrained model (recommended for training) # Train the model results = model.train(data='data.yaml', epochs=100, imgsz=640) 数据文件 Data.yaml should be of this: #change ...
YOLOv8 同时支持目标检测和姿态估计任务。 本课程以熊猫姿态估计为例,将手把手地教大家使用CVAT标注图像中的关键点和skeleton,并使用YOLOv8训练自己的数据集,完成一个多姿态估计实战项目。 本课程分别在Windows和Ubuntu系统上做项目实战演示。包括:安装软件环境、安装PyTorch、安装YOLOv8、使用CVAT标注自己的数据集、数据...
YOLOv8旋转目标检测项目实战:标注和训练自己的数据集发布者 关注 白老师人工智能学堂 教授、博士生导师 课程概述 评论(3) 旋转目标检测是计算机视觉领域的一个高级任务,它在传统目标检测的基础上进一步发展。传统目标检测技术主要关注于识别和定位图像中的物体,通常以水平边界框(HBB)来标识目标物体的位置。而旋转目标检...
YOLOv8 同时支持目标检测和姿态估计任务。 本课程以熊猫姿态估计为例,将手把手地教大家使用CVAT标注图像中的关键点和skeleton,并使用YOLOv8训练自己的数据集,完成一个多姿态估计实战项目。 本课程分别在Windows和Ubuntu系统上做项目实战演示。包括:安装软件环境、安装PyTorch、安装YOLOv8、使用CVAT标注自己的数据集、数据...
YOLOv8 同时支持目标检测和姿态估计任务。 本课程以熊猫姿态估计为例,将手把手地教大家使用CVAT标注图像中的关键点和skeleton,并使用YOLOv8训练自己的数据集,完成一个多姿态估计实战项目。 本课程分别在Windows和Ubuntu系统上做项目实战演示。包括:安装软件环境、安装PyTorch、安装YOLOv8、使用CVAT标注自己的数据集、数据...
YOLOv8 同时支持目标检测和姿态估计任务。 本课程以熊猫姿态估计为例,将手把手地教大家使用CVAT标注图像中的关键点和skeleton,并使用YOLOv8训练自己的数据集,完成一个多姿态估计实战项目。 本课程分别在Windows和Ubuntu系统上做项目实战演示。包括:安装软件环境、安装PyTorch、安装YOLOv8、使用CVAT标注自己的数据集、数据...
本课程将手把手地教大家使用labelImg标注和使用YOLOv8训练自己的数据集,完成一个多目标检测实战项目,可检测图像和视频中的足球和梅西两个目标类别。 本课程分别在Windows和Ubuntu系统上做项目演示。包括:安装软件环境(Nvidia显卡驱动、cuda和cudnn)、安装YOLOv8、标注自己的数据集、准备自己的数据集(自动划分训练集和...