1、实时性能卓越:YOLO-NAS-POSE的研发初衷就是为了提供实时性的姿态评估服务,因此它具有极高的图像处理速度,满足了如交互式系统这类需要即时响应的应用需求。2、准确率高:借助机智的神经网络架构搜索(NAS)技术,YOLO-NAS-POSE成功地找寻出最佳的网络结构组成方案,进一步提升了姿态分析的准确度。3、优化后的网络结...
YOLO-NAS模型人体姿态检测 与传统的姿势估计模型相比,YOLO-NAS Pose的做法有所不同。它不是首先检测人这个对象,然后估计他们的姿势,而是可以一步一次检测和估计这个对象及其姿势。Pose模型建立在YOLO-NAS对象检测架构之上。物体检测模型和姿势估计模型具有相同的模型设计,但模型头部设计不同。YOLO-NAS Pose的模型头部...
与传统的姿势估计模型相比,YOLO-NAS Pose的做法有所不同。它不是首先检测人这个对象,然后估计他们的姿势,而是可以一步一次检测和估计这个对象及其姿势。Pose模型建立在YOLO-NAS对象检测架构之上。物体检测模型和姿势估计模型具有相同的模型设计,但模型头部设计不同。YOLO-NAS Pose的模型头部专为其多任务目标而设计。 在...
姿势模型建立在YOLO-NAS目标检测架构之上,目标检测模型和姿态估计模型具有相同的脊柱和颈部设计,但头部不同。YOLO-NASPose的头部专为其多任务目标而设计,即检测单个类别的物体(如人或动物)并估计物体的姿势。YOLO-NAS Pose架构–头部设计 这种令人印象深刻的组合是Deci专有的神经架构搜索(NAS)引擎AutoNAC的结果,...
AI应用新开源姿态估计模型:YOLO-NAS Pose 传统上,姿态估计有两种主要方法:1)自上而下的方法首先精确定位对象,然后检测特定的关键点。该方法缺乏可扩展性,且延迟较长。 2)自下而上的方法首先对所有关键点进行分类并重新创建单个姿势。此方法无法处理重叠或复杂的场景。- YOLO-NAS 同时执行两项任务:快速检测...
姿势模型建立在YOLO-NAS目标检测架构之上,目标检测模型和姿态估计模型具有相同的脊柱和颈部设计,但头部不同。YOLO-NAS Pose的头部专为其多任务目标而设计,即检测单个类别的物体(如人或动物)并估计物体的姿势。 YOLO-NAS Pose架构–头部设计 这种令人印象深刻的组合是Deci专有的神经架构搜索(NAS)引擎AutoNAC的结果,它...
YOLO-NAS目前是YOLO系列模型的最新成员,人们应该知道如何在自定义数据集上训练它。在这里,我们展示了如何在Thermal Dataset上训练YOLO-NAS。YOLO-NAS Pose也是一个在姿势估计方面表现非常出色的模型,YOLO-NAS Pose简介是了解模型工作原理的好资源。 总结和结论 ...
YOLO-NAS Pose与传统的Pose Estimation模型相比,其工作方式有所不同。它不是先检测人,然后估计他们的姿势,而是可以在一个步骤中同时检测和估计人及其姿势。 YOLO-NASPose架构–骨干和颈部设计 姿势模型建立在YOLO-NAS目标检测架构之上,目标检测模型和姿态估计模型具有相同的脊柱和颈部设计,但头部不同。YOLO-NASPose的...
25 + * [YOLO-NAS-Pose](https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS-POSE.md) 22 26 * [YOLOv8-Pose](https://github.com/ultralytics/ultralytics) 23 27 * [YOLOv7-Pose](https://github.com/WongKinYiu/yolov7) 24 28 Diff for: docs/YOLONAS_Pose....
今年早些时候,Deci凭借其开创性的目标探测基础模型YOLO-NAS获得了广泛认可。在YOLO-NAS成功的基础上,该公司现在推出了YOLO-NASPose作为其Pose Estimation对应产品。这个姿势模型在延迟和准确性之间提供了一个极好的平衡。姿态估计在计算机视觉中起着至关重要的作用,涵盖了广泛的重要应用。这些应用包括在医疗保健中监测...