四、推理测试 cd /workspace/YOLO-World 1、普通检测 from ultralytics import YOLOWorld # Initialize a YOLO-World model model = YOLOWorld('yolov8s-world.pt') # Execute inference with the YOLOv8s-world on the specified image results = model.predict('bus.jpg') # Show results results[0].show...
作者在表6中比较了预训练的YOLO-World与先前的YOLO检测器。在将YOLO-World在COCO数据集上进行微调时,考虑到COCO数据集的词汇量较小,作者移除了所 Proposal 的RepVL-PAN以进一步加速。在表6中,很明显作者的方法在COCO数据集上可以取得相当不错的零样本性能,这表明YOLO-World具有很强的泛化能力。此外,与从头开始训练...
1. LVIS对象检测(Main Results on LVIS Object Detection):在LVIS基准上的零样本评估中,YOLO-World在零样本性能和推理速度方面优于之前的最先进方法。与GLIP、GLIPv2和Grounding DINO相比,YOLO-World在模型参数更少的情况下表现更好。与DetCLIP相比,YOLO-World实现了相当的性能(35.4 v.s. 34.4),但推理速度提高了...
多模态时代,开放词汇目标检测,正在超越Faster R-CNN、DETR、YOLOs等传统方法,成为极具潜力的研究方向,近两年顶会创新也层出不穷,腾讯重磅发布不久的YOLO-World,便是一种先进的开放词汇检测器,基于简洁高效的YOLOv8架构,通过视觉语言建模,以及大规模数据集的预训练,能够识别并定位训练集中未出现的新类别物体,具备超强...
使用ONNX格式模型直接推理部署,基于VMDM模型部署框架,直接导入模型,开始推。我直接生成并导出了两种自定义对象检测模型,分别支持识别大象跟鸟类,运行结果如下: 本人测试发现,OpenVINO跟ONNXRUNTIME两个模型部署框架可以轻松推理导出ONNX格式YOLO-World的模型,但是OpenCV DNN无法加载。所以推荐使用OpenVINO跟ONNXRUNTIME两个...
2.1 使用模型推理预测 2.2 自定义词汇推理 2.3 自定义词汇类别保存模型 1.模型简介 源码地址:https://github.com/AILab-CVC/YOLO-World YOLO-World模型引入了基于开放词汇检测任务的先进实时方法,同时采用了视觉语言建模和在大量数据集上进行预训练的方法,能够以无与伦比的效率在零样本场景中出色地识别大量物体。这...
完成实现YOLO-World预训练模型在大规模对象检测、图像文本数据集训练策略方面主要有区域文本对比损失与基于自动标注实现的伪标签策略。 实验对比 对比其它的开放动词对象检测模型,YOLO-World参数更少,速度更快,显示出非常好的检测能力与推理速度。 安装与测试
关于YOLO-World: 其是一个使用开放词汇进行目标检测的新框架,且是以YOLOv8框架为detector,所以其特点就继承了YOLO系列,也即轻量、快速、性能好。另外,既然是文本和图片一起作为输入,那么就需要有一个文本embedding的模块,这里用的是CLIP,其将用户输入的词汇列表转换为特征向量,与输入图像一起进行推理。
在LVIS上进行零样本推理的可视化结果。我们采用预训练的YOLO-World-L,并在COCO val2017上使用LVIS词汇表(包含1203个类别)进行推理 三、技术细节和架构 YOLO World的速度和效率的核心是其三个主要组件: YOLO检测器, CLIP文本编码器, 用于跨模态融合的定制网络。
利用离线词汇进行推理:YOLO-World 引入了 "先提示后检测 "的策略,利用离线词汇进一步提高效率。这种方法可以使用预先计算的自定义提示,包括标题或类别,并将其编码和存储为离线词汇嵌入,从而简化检测过程。 由YOLOv8 支持:基于 Ultralytics YOLOv8YOLO-World 利用实时对象检测方面的最新进展,以无与伦比的准确性和速度...