Tiny YOLO 在 Darknet 上训练的截图 四、 通过 Vivado HLS 为 FPGA 准备模型 要将模型部署到 FPGA,需要将神经网络操作转换为硬件级描述。使用 Xilinx 的 Vitis HLS(高级综合)可以将 Tiny YOLO v4 的 C++ 模型代码的转化为 Verilog RTL(寄存器传输级)代码,从而将模型从软件世界带入硬件实现。详细步骤:1....
实验结果表明,该方法具有比YOLOv4-tiny和YOLOv3-tiny更快的目标检测速度,并且其平均精度的平均值与YOLOv4-tiny几乎相同。它更适合于实时目标检测。 2、YOLO V4 Tiny概要 2.1、模型结构 Yolov4-tiny使用特征金字塔网络提取不同尺度的特征图,进而提高目标检测速度,而不使用Yolov4方法中使用的空间金字塔池和路径聚合网络...
1、在特征利用部分,YoloV4-Tiny提取多特征层进行目标检测,一共提取两个特征层,两个特征层的shape分别为(26,26,128)、(13,13,512)。 2、输出层的shape分别为(13,13,75),(26,26,75),最后一个维度为75是因为该图是基于voc数据集的,它的类为20种,YoloV4-Tiny只有针对每一个特征层存在3个先验框,所以最后...
今天刷屏的动态一定是 YOLOv4-Tiny! 实际上,YOLOv4-Tiny 在大前天(2020.06.25)的晚上就正式发布了,但鉴于当时处于端午假期,Amusi 特意没有更新,希望各位CVers过个好节,科研缓一缓,哈哈。 YOLOv4 重要时间节点 2020.04:YOLOv4 正式发布 2020.06:YOLOv4-Tiny 正式发布 ...
YOLOV4-tiny网络介绍 YOLOv4-tiny是YOLOv4的一个更为精简的版本,作为一种轻量化模型,其参数数量大幅减少至仅600万,约为原版本的十分之一,从而显著提高了检测速度。该模型的网络架构包含38层,并整合了三个残差单元。在激活函数方面,选择了LeakyReLU。同时,为了优化目标的分类与回归,该模型采用了两个特征层...
YOLOv4-tiny是YOLOv4的一个更为精简的版本,作为一种轻量化模型,其参数数量大幅减少至仅600万,约为原版本的十分之一,从而显著提高了检测速度。该模型的网络架构包含38层,并整合了三个残差单元。在激活函数方面,选择了LeakyReLU。同时,为了优化目标的分类与回归,该模型采用了两个特征层,并利用特征金字塔(FPN)网络...
最后,利用该模块构建了轻量级检测器CSL-YOLO,在仅43% FLOPs和52%参数的情况下,实现了比TinyYOLOv4更好的检测性能。 2本文方法 2.1 CSL-Module 以往的研究表明,使用更少的计算量来生成冗余特征图,可以大大减少FLOPs。CSPNet提出了一种跨阶段求解的方法,GhostNet系统地验证了cheap操作在该问题中的有效性。然而,问题是...
一个。git clone https://github.com/XiongDa0001/yolov4-tiny-keras 湾。制作VOC 格式的数据集 C。运行voc_annotation.py 得到 2007_train.txt 和 2007_val.txt 进行训练 d。修改classes_path 中的内容以包含您检测到的内容 e. 安装tensorflow-gpu==1.13.1 和 Cuda 10.0 或 10.1 更多训练过程请参考https:...
YOLOv4-tiny结构是YOLOv4的精简版,属于轻量化模型,参数只有600万相当于原来的十分之一,这使得检测速度提升很大。整体网络结构共有38层,使用了三个残差单元,激活函数使用了LeakyReLU,目标的分类与回归改为使…
目标检测之Tiny YOLOv3算法 目标检测之YOLO算法:YOLOv1,YOLOv2,YOLOv3,TinyYOLO,YOLOv4,YOLOv5,YOLObile,YOLOF详解:初识CV:目标检测之YOLO算法:YOLOv1,YOLOv2,YOLOv3,TinyYOLO,YOLOv4,YOLOv5,YOLObile,YOLOF详解 … 初识CV发表于初识CV 超越YOLOv5的PP-YOLOv2和1.3M超轻量PP-YOLO Tiny都来了! mAP 50.3%,...