最近在学习使用yolo进行目标识别,然而由于显存问题,yolo官方的train.py跑不了,所以尝试了两种方法,一种是减小yolo训练时的batch_size,另一种是使用yolo-tiny,现记录一下两者的效果对比。 先交代一下前提,我的显卡是GTX1050Ti的,显存4G,训练只有一种类别,训练集有140张图,平均每张图上有3个左右目标。使用的是yol...
笔者手头yolo v3-tiny模型是darknet模型,输入图像尺寸是416*416,在VOC2007和VOC2012的train和val四个数据集进行训练,VOC2007的test数据集作为验证集。OpenVINO不支持darknet模型转换,因此首先需要将darknet模型转换为OpenVINO支持的模型,这里转换为caffe模型[10],也可以转换为tensorflow模型[11],当然也可以在tensorflow下...
米尔的 ZU3EG 开发板凭借其可重构架构为 AI 和计算密集型任务提供了支持,同时避免了 7nm 工艺对国产芯片设计的制约。通过在 ZU3EG 上部署 Tiny YOLO V4,我们可以为智能家居、智慧城市等 AIoT 应用提供高效的解决方案。CPU GPU FPGA 架构对比 二、 了解 Tiny YOLO 模型及其适用性 YOLO(You Only Look Once...
不仅如此,与 PP-YOLOv2 一同面世的,还有体积只有 1.3M 的 PP-YOLO Tiny,比 YOLO-Fastest 更轻、更快!这样超超超轻量的算法面世,更是很好的满足了产业里大量边缘、轻量化、低成本芯片上使用目标检测算法的种种诉求!感兴趣的小伙伴可以直接查看 PP-YOLOv2 论文:https://arxiv.org/abs/2104.10419 并...
YOLOv4-tiny结构是YOLOv4的精简版,属于轻量化模型,参数只有600万相当于原来的十分之一,这使得检测速度提升很大。整体网络结构共有38层,使用了三个残差单元,激活函数使用了LeakyReLU,目标的分类与回归改为使用两个特征层,合并有效特征层时使用了特征金字塔(FPN)网络。其同样使用了CSPnet结构,并对特征提取网络进行通道...
YOLO-Tiny的设计理念是将目标检测任务转化为一个回归问题,通过将图像划分为网格,并在每个网格中预测目标的边界框和类别,来实现对目标的检测。相比于传统的目标检测算法,YOLO-Tiny的主要优势在于其高速度和实时性。 YOLO-Tiny的网络结构主要包括24个卷积层和2个全连接层。它的输入是一张预定义大小的图像,经过一系列...
PP-YOLO Tiny 采用了移动端高性价比骨干网络 MobileNetV3。 2、更适用移动端的检测头(head): 除了骨干网络,PP-YOLO Tiny 的检测头(head)部分采用了更适用于移动端的深度可分离卷积(Depthwise Separable Convolution),相比常规的卷积操作,有更少的参数量和运算成本, 更适用于移动端的内存空间和算力。 3、去除对模...
1 YOLOv2-Tiny模型简介 YOLOv2-Tiny目标检测算法由以下3步组成: (1)对任意分辨率的RGB图像,将各像素除以255转化到[0,1]区间,按原图长宽比缩放至416×416,不足处填充0.5。 (2)将步骤(1)得到的416×416×3大小的数组输入YOLOv2-Tiny网络检测,检测后输出13×13×425大小的数组。对于13×13×425数组的理解:将...
目标检测之Tiny YOLOv3算法 目标检测之YOLO算法:YOLOv1,YOLOv2,YOLOv3,TinyYOLO,YOLOv4,YOLOv5,YOLObile,YOLOF详解:初识CV:目标检测之YOLO算法:YOLOv1,YOLOv2,YOLOv3,TinyYOLO,YOLOv4,YOLOv5,YOLObile,YOLOF详解 … 初识CV发表于初识CV 超越YOLOv5的PP-YOLOv2和1.3M超轻量PP-YOLO Tiny都来了! mAP 50.3%,...