其中,task参数可以接受三个参数值:detect、classify和segment,分别对应于检测、分类和分段三种任务。类似地,mode参数可以有三个取值,分别是train、val或predict。此外,在导出训练模型时,我们也可以将mode参数指定为export。 有关所有可能的yolo CLI标志和参数,有兴趣的读者可参考链接https://docs.ultralytics.com/config...
yolo task=classify mode=predict model='./runs/classify/train6/weights/best.pt' source=white_wagtail.jpg预测的结果都非常好 导出模型 我们可以直接使用模型进行推理,只需打开并使用它即可。为了获得更快的推理时间,我们可以将其导出为TensorRT 因为我们使用的是NVIDIA Jetson Orin NX,甚至是ONNX。
其中,task参数可以接受三个参数值:detect、classify和segment,分别对应于检测、分类和分段三种任务。类似地,mode参数可以有三个取值,分别是train、val或predict。此外,在导出训练模型时,我们也可以将mode参数指定为export。 有关所有可能的yolo CLI标志和参数,有兴趣的读者可参考链接https://docs.ultralytics.com/config...
代码中,task flag 可以接受三个参数:detect、classify、segment,分别对应三类任务。类似地,mode 也可以接受三个参数:train、val、predict。 如何在 Python API 中使用 YOLOv8? 你可以创建一个简单的 Python 文件,以导入 YOLO 模块并执行特定任务。 上面的代码表明,首先需要在 COCO128 数据集上训练 YOLOv8 Nano 模...
您可以传递 task 如:[detect、classify、segment] ,mode 如:[train、predict、val、export] ,model如:作为未初始化的 .yaml 或之前训练的 .pt 文件。 YOLOv8 Python 包 除了可用的 CLI 工具外,YOLOv8 现在还作为 PIP 包分发。这使得本地开发变得有点困难,但解锁了将 YOLOv8 编织到 Python 代码中的所有可能...
代码中,task flag 可以接受三个参数:detect、classify、segment,分别对应三类任务。类似地,mode 也可以接受三个参数:train、val、predict。 如何在 Python API 中使用 YOLOv8? 你可以创建一个简单的 Python 文件,以导入 YOLO 模块并执行特定任务。 上面的代码表明,首先需要在 COCO128 数据集上训练 YOLOv8 Nano 模...
代码中,task flag 可以接受三个参数:detect、classify、segment,分别对应三类任务。类似地,mode 也可以接受三个参数:train、val、predict。 如何在 Python API 中使用 YOLOv8? 你可以创建一个简单的 Python 文件,以导入 YOLO 模块并执行特定任务。 上面的代码表明,首先需要在 COCO128 数据集上训练 YOLOv8 Nano 模...
yolotask=detectmode=trainmodel=yolov8n.ptdata=ultralytics/cfg/mask.yamlepochs=3batch=16 6.3 针对其他任务 包括四种:detect 、segment、classify 、pose 通过修改YOLO()导入正确任务的yaml配置文件,以及通过data来指定需要载入的对应任务的数据集即可。
task:选择任务类型,可选['detect', 'segment', 'classify', 'init'] mode: 选择是训练、验证还是预测的任务蕾西 可选['train', 'val', 'predict'] model: 选择yolov8不同的模型配置文件,可选yolov8s.yaml、yolov8m.yaml、yolov8l.yaml、yolov8x.yaml data...
dataSet 文件夹下面存放训练集、验证集、测试集的划分,通过脚本生成,可以创建一个split_train_val.py文件,代码内容如下: # coding:utf-8 import os import random import argparse parser = argparse.ArgumentParser() # xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下 ...