Faster R-CNN在精度上表现较好,能够有效处理小物体和复杂背景。然而,由于采用两阶段的处理方式,它的速度较慢,适合精度要求较高但不特别看重实时性的场景。 差异分析 整体来看,YOLO11在速度、实时性和小目标检测方面表现突出,适合低复杂度的实时场景;SSD在多目标检测任务中具有优势,而Faster R-CNN则以高精度和复杂模...
(2) R-CNN训练过程分为了三个阶段,而Fast R-CNN直接使用softmax替代SVM分类,同时利用多任务损失函数边框回归也加入到了网络中,这样整个的训练过程是端到端的(除去region proposal提取阶段)。 也就是说,之前R-CNN的处理流程是先提proposal,然后CNN提取特征,之后用SVM分类器,最后再做box regression,而在Fast R-CN...
Faster R-CNN 需要注意的是,这里的Faster R-CNN讨论的是RPN的损失,所以在分类损失中,Faster R-CNN的RPN用的是二值交叉熵,因为RPN分类是区分当前的区域是不是个目标的二分类问题。 SSD,YOLO,YOLOv2 SSD,YOLO和YOLOv2都是one-stage的结构,没有区域建议,所以它们的分类损失是交叉熵,如果是针对VOC数据集,那么类别...
2. Faster R-CNN(基于区域的卷积神经网络) Faster R-CNN是一种最先进的物体检测模型。它有两个主要组件:一个深度全卷积区域提议网络和一个Fast R-CNN物体检测器。它使用区域提议网络(RPN),该网络与检测网络共享全图像卷积特征(Ren等,2015)。RPN是一个全卷积神经网络,生成高质量的提议。然后,Fast R-CNN使用这...
YOLO (You Only Look Once), RCNN (Region-based Convolutional Neural Networks), Faster R-CNN, SSD (Single Shot MultiBox Detector) 等算法都是用于目标检测的经典算法,它们在实现目标检测任务时有一些区别。 YOLO: YOLO 是一种单阶段(single-stage)目标检测算法,其核心思想是将目标检测问题转化为一个回归问...
SSD结合了YOLO中的回归思想和Faster-RCNN中的Anchor机制,使用全图各个位置的多尺度区域进行回归,既保持了YOLO速度快的特性,也保证了窗口预测的跟Faster-RCNN一样比较精准。 SSD的核心是在不同尺度的特征特征图上采用卷积核来预测一系列Default Bounding Boxes的类别、坐标偏移。
网络结构的设计参考了GoogleNet,在卷积层后面加了几个全连接层进行预测。yolo在FasterRCNN之后发表但在SSD之前发表,网络中的一些数据集上的性能主要是和Fast RCNN 以及DPM比较,可能是当时FasterRCNN还没有开源,yolo是ONE STAGE检测,实现了e2e的训练与测试,并且实时,但准确率一般。
SSD只需一个完整的框架来训练和测试。在NVIDIA Titan X对于一个大小是300×300的输入图像,SSD在VOC2007测试上的MAP是74.3%,速度是59FPS。对于512×512的输入,SSD的MAP是76.9%,比Faster RCNN更准。和其他单阶段的方法比,即便是输入较小的图像,SSD的准确性也会更高。