# dx = [-1, 1] 当pred=1 true=0时(网络预测说这里有个obj但是gt说这里没有), dx=1 => alpha_factor=0 => loss=0 # 这种就是检测成正样本了但是检测错了(false positive)或者missing label的情况 这种情况不应该过多的惩罚->loss=0 dx = pred - true # reduce only missing label effects # ...
分类损失(cls_loss):判断模型是否能够准确地识别出图像中的对象,并将其分类到正确的类别中。 边界框损失(box_loss):用于衡量模型预测的边界框与真实边界框之间的差异。 置信度损失(obj_loss):模型预测边界框覆盖对象的程度。 我们为什么需要 objectness loss? 对于每个边界框的预测,都会有一个与之相关的预测值,称...
可以看到box的loss是1-giou的值。 2. lobj部分 lobj代表置信度,即该bounding box中是否含有物体的概率。在yolov3代码中obj loss可以通过arc来指定,有两种模式: 如果采用default模式,使用BCEWithLogitsLoss,将obj loss和cls loss分开计算: BCEobj = nn.BCEWithLogitsLoss(pos_weight=ft([h['obj_pw']]), red...
classFocalLoss(nn.Module):"""用在代替原本的BCEcls(分类损失)和BCEobj(置信度损失) Wraps focal loss around existingloss_fcn(),i.e.criteria=FocalLoss(nn.BCEWithLogitsLoss(),gamma=1.5)论文:https://arxiv.org/abs/1708.02002https://blog.csdn.net/qq_38253797/article/details/116292496TFimplementation...
损失函数的作用为度量神经网络预测信息与期望信息(标签)的距离,预测信息越接近期望信息,损失函数值越小。由上述每个格子的预测信息可知,训练时主要包含三个方面的损失:矩形框损失(lossrect)、置信度损失(lossobj)、分类损失(lossclc)。因此yolov5网络的损失函数定义为: ...
在YOLOv3中,Loss分为三个部分: 一个是xywh部分带来的误差,也就是bbox带来的loss 一个是置信度带来的误差,也就是obj带来的loss 最后一个是类别带来的误差,也就是class带来的loss 在代码中分别对应lbox, lobj, lcls,yolov3中使用的loss公式如下: $$ ...
可以看到我的损失函数理解和行云大佬的损失函数理解在回归损失以及分类损失上是完全一致的,只有obj loss表示形式完全不同。对于obj loss,我的公式里面是方差损失,而行云大佬是交叉熵损失。那么这两种形式哪一种是正确的呢? 其实只要对交叉熵损失和方差损失求个导问题就迎刃而解了。
0.625265 :avg loss,是平均Loss,这个数值应该越低越好,一般来说,一旦这个数值低于0.060730 avg就可以终止训练了。 rate 代表当前的学习率,是在.cfg文件中定义的。 seconds: 表示当前批次训练花费的总时间。 images: 这一行最后的这个数值是6274*64的大小,表示到目前为止,参与训练的图片的总量。
具体来说,框损失(box_loss)代表了预测边界框与真实边界框之间的差异;类别损失(cls_loss)反映了模型预测类别的准确性;而目标损失(obj_loss)则是模型判断目标是否存在的准确度指标。所有这三种损失在训练集上均呈下降趋势,表明模型在捕获布匹缺陷特征方面的能力在增强。
一个是置信度带来的误差,也就是obj带来的loss。lobj代表置信度,即该bounding box中是否含有物体的概率。在yolov3代码中obj loss可以通过arc来指定,有两种模式: 如果采用default模式,使用BCEWithLogitsLoss,将obj loss和cls loss分开计算: BCEobj = nn.BCEWithLogitsLoss(pos_weight=ft([h['obj_pw']]), reduct...