在这里插入图片描述 1.1 Mosaic数据增强 Yolov5的输入端采用了和Yolov4一样的Mosaic数据增强的方式。 Mosaic数据增强提出的作者也是来自Yolov5团队的成员,不过,随机缩放、随机裁剪、随机排布的方式进行拼接,对于小目标的检测效果还是很不错的。 在这里插入图片描述 4张图片拼接 随机缩放 随机裁剪 随机排布 算法优点: 丰...
mosaic增强被认为是在传统增强算法最能提升模型性能的增强手段之一,因此研究了一下如何在已有数据集和标注情况下通过这个增强扩充自己的数据集,数据集扩展后,自动生成图片和对应标注,这样无需重新标注大大加快数据集集成能力。因此我实现了这个功能,而且效果很不错。 【效果展示】 标注情况: 【使用方法】 安装好opencv-...
defload_mosaic(self,index):# YOLOv5马赛克数据增强,它将四张不同的图像拼接成一张大图像以增加场景的复杂性和多样性labels4,segments4=[],[]#初始化列表,存储拼接后图像的标签和分割信息s=self.img_size#定义拼接后图像的大小,如设置s=640# 计算马赛克图像中心点的坐标,self.mosaic_border=[-img_size//2,...
Mosaic 是一种新的数据增强方法 应用一些增强的类型 修改的SAM 修改的PAN Scaled YOLOv4 在关于v4的第一篇发布六个月后,作者又发布了另一篇论文,在其中他们发布了扩展网络架构的机制。该机制不仅包括对输入分辨率、网络宽度和深度的缩放,还包括对网络结构本身的缩放。 虚线仅表示模型推理的延迟时间,实线包括...
YOLOv5Lite的输入端采用了和YOLOv5、YOLOv4一样的Mosaic数据增强的方式。其实Mosaic数据增强的作者也是来自YOLOv5团队的成员,不过,随机缩放、随机裁剪、随机排布的方式进行拼接,对于小目标的检测效果还是很不错的。 为什么要进行Mosaic数据增强呢? 在平时训练模型时,一般来说小目标的AP比中目标和大目标低很多。而Coco数...
Mosaic 源码分析 下面根据yolox源码进行分析: yolox想法是先生成一个Dataset类,然后根据这个类可以进行iterater,故写了一个pull_item函数。 基于以上,然后可以定义到MosaicDetection类 classMosaicDetection(Dataset):"""Detection dataset wrapper that performs mixup for normal dataset."""def__init__(self, dataset...
使用新特性:WRC、CSP、CmBN、SAT、Mish 激活函数、Mosaic数据增强、CmBN、DropBlock正则化、CIoU损失,结合这些技巧实现先进的结果。 实现结果 在Tesla V100上,MS COCO数据集以65 FPS的实时速度达到43.5 % AP( 65.7 % AP50 )。 一、 Introduction—简介
对于骨干用于训练时增加了CutMix +Mosaic 增强,DropBlock正则化,类标签平滑,用于推理使用Mish激活,跨阶段部分连接(CSP),多输入加权剩余连接(MiWRC) 检测器的训练改进,ciu -loss, CmNN, DropBlock,Mosaic ,SAT,消除网格敏感性,单一地面真理的多锚,余弦退火学习率调度,最优超参数,训练期间的随机形状,推理时Mish, SPP...
一,Mosaic数据增强(https://zhuanlan.zhihu.com/p/143747206) Yolov4/5中使用的Mosaic是参考2019年底提出的CutMix数据增强的方式,但CutMix只使用了两张图片进行拼接,而Mosaic数据增强则采用了4张图片,随机缩放、随机裁剪、随机排布的方式进行拼接。 这里首先要了解为什么要进行Mosaic数据增强呢?
1、Mosaic数据增强 YOLOv5 Lite的输入端采用了和YOLOv5、YOLOv4一样的Mosaic数据增强的方式。其实Mosaic数据增强的作者也是来自YOLOv5团队的成员,不过,随机缩放、随机裁剪、随机排布的方式进行拼接,对于小目标的检测效果还是很不错的。 为什么要进行Mosaic数据增强呢?