在Faster-RCNN中,Anchor都是手动设定的,YOLOv2使用k-means聚类算法对训练集中的边界框做了聚类分析,尝试找到合适尺寸的Anchor。另外作者发现如果采用标准的k-means聚类,在box的尺寸比较大的时候其误差也更大,而我们希望的是误差和box的尺寸没有太大关系。所以通过IOU定义了如下的距离函数,使得误差和box的大小无关: ...
yolov3在做boundingbox预测的时候,用到了anchor boxes.这个anchors的含义即最有可能的object的width,height.事先通过聚类得到.比如某一个feature map cell,我想对这个feature map cell预测出一个object,围绕这个feature map cell,可以预测出无数种object的形状,并不是随便预测的,要参考anchor box的大小,即从已标注的...
Kmeans算法的基本思想是:初始化K个中心点,然后计算每个样本点到所有中心点的距离,接着把样本划分到距离其最近的中心点。如下图所示,三个红点为中心点,若干黑点为样本,根据Kmeans算法思想,每个样本都被划分到距离其最近的红点,从而被划分到同一个红点的样本组成一个簇。 假设数据集有X0、X 1、X 2、…、X ...
Opencv3.4.1集成了Kmeans算法: doublekmeans(InputArray data,intK, InputOutputArray bestLabels, TermCriteria criteria,intattempts,intflags, OutputArray centers = noArray() ); 参数说明: 测试代码: voidkmeans_test(void){//10个待聚类样本,每个样本的数据长度为1floatbuffer[10] = {0.1,5.2,10.35,0.08,...
解决问题:YOLOv5默认采用K-Means算法聚类COCO数据集生成的锚框,并采用遗传算法在训练过程中调整锚框,但是K-Means在聚类时,从其算法的原理可知,K-Means正式聚类之前首先需要完成的就是初始化k个簇中心。同时,也正是因为这个原因,使得K-Means聚类算法存在着一个巨大的缺陷——收敛情况严重依赖于簇中心的初始化状况,采...
YOLOv2 采用 k-means 聚类算法对训练集中的边界框做了聚类分析,选用 boxes 之间的 IOU 值作为聚类指标。综合考虑模型复杂度和召回率,最终选择 5 个聚类中心,得到 5 个先验框,发现其中中扁长的框较少,而瘦高的框更多,更符合行人特征。通过对比实验,发现用聚类分析得到的先验框比手动选择的先验框有更高的平均 ...
yoloV3采用K-means聚类得到先验框的尺寸,为每种尺度设定3种先验框,总共聚类出9种尺寸的先验框。 在COCO数据集这9个先验框是:(10x13),(16x30),(33x23),(30x61),(62x45),(59x119),(116x90),(156x198),(373x326)。 在最小的(13x13)特征图上(有最大的感受野)应用较大的...
在Faster-RCNN中,Anchor都是手动设定的,YOLOv2使用k-means聚类算法对训练集中的边界框做了聚类分析,尝试找到合适尺寸的Anchor。另外作者发现如果采用标准的k-means聚类,在box的尺寸比较大的时候其误差也更大,而我们希望的是误差和box的尺寸没有太大关系。所以通过IOU定义了如下的距离函数,使得误差和box的大小无关:...