YOLO系列:PassThrough Layer、spp、IoU、GIoU、DIoU、CIoU、Focal loss、PAN、csp; 目标检测算法可以分为两类,一类是基于Region Proposal的R-CNN系算法(R-CNN,Fast R-CNN, Faster R-CNN),它们是two-stage的,需要先使用启发式方法(selective search)或者CNN网络(RPN)产生Region Proposal,然后再在Region Proposal上...
defforward(self,x):returnx+self.cv2(self.cv1(x))ifself.addelseself.cv2(self.cv1(x))classBottleneckCSP(nn.Module):#CSPBottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks def__init__(self,c1,c2,n=1,shortcut=True,g=1,e=0.5):# ch_in,ch_out,number,shortcut,groups,e...
应用许多附加类型的图像增强和类平衡。 对于骨干用于训练时增加了CutMix +Mosaic 增强,DropBlock正则化,类标签平滑,用于推理使用Mish激活,跨阶段部分连接(CSP),多输入加权剩余连接(MiWRC) 检测器的训练改进,ciu -loss, CmNN, DropBlock,Mosaic ,SAT,消除网格敏感性,单一地面真理的多锚,余弦退火学习率调度,最优超参...
1、总括 YOLOv5s的CSP结构是将原输入分成两个分支,分别进行卷积操作使得通道数减半,然后一个分支进行Bottleneck * N操作,然后concat两个分支,使得BottlenneckCSP的输入与输出是一样的大小,这样是为了让模型学习到更多的特征。 YOLOv5中的CSP有两种设计,分别为CSP1_X结构和CSP2_X结构。 2、CSP1_X结构 网络结构...
Backbone上采用了CSPDarknet53、Mish激活函数、Dropblock等方式, Neck中采用了SPP、FPN+PAN的结构, 输出端则采用CIOU_Loss、DIOU_nms操作。 因此Yolov4对Yolov3的各个部分都进行了很多的整合创新,关于Yolov4详细的讲解还是可以参照大白之前写的《深入浅出Yolo系列之Yolov3&Yolov4核心基础知识完整讲解》,写的比较详细。
Backbone:使用的依旧是CSP的思想,不过YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块; PAN-FPN:毫无疑问YOLOv8依旧使用了PAN的思想,不过通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8将YOLOv5中PAN-FPN上采样阶段中的卷积结构删除了,同时也将C3...
与 ResNet 类似,PP-YOLOE 使用 3 个堆叠的卷积组成的 stem 结构以及 4 个 CSPRepResStage。 在Neck 方面沿用了 PAN 的结构,由 5 个 CSPRepResStage 组成,与 Backbone 不同的是,Neck 中移除了 ESE 以及 RepResBlock 中的残差连接。 最终经过重新设计的 Backbone 和 Neck 相较于 PP-YOLOv2 中的结构精度...
YOLOv5l的结构如图2所示,其中CSPDarknet53包含C3块,这是CSP融合模块。CSP策略将基础层的特征图分成两部分,然后通过Cross-Stage层次结构合并它们。因此,C3模块可以有效地处理冗余的梯度,同时提高残差和稠密块之间信息传递的效率。C3是BottleNeckCSP的简化版本,目前用于最新的YOLOv5变体。
与 ResNet 类似,PP-YOLOE 使用 3 个堆叠的卷积组成的 stem 结构以及 4 个 CSPRepResStage。在Neck 方面沿用了 PAN 的结构,由 5 个 CSPRepResStage 组成,与 Backbone 不同的是,Neck 中移除了 ESE 以及 RepResBlock 中的残差连接。最终经过重新设计的 Backbone 和 Neck 相较于 PP-YOLOv2 中的结构精度提升...
CSP模块包括CSP1_X模块和CSP2_X模块,两者都借鉴了CSPNet网络结构,CSP1_X模块和CSP2_X模块如下图所示: CSP1_X模块 CSP2_X模块 可见,ResUnit模块的shortcut参数设置为True,就是CSP1_X模块的组件;设置成False,就是CSP2_X模块的组件,ResUnit模块代码实现如下: ...