YOLO已经悄悄来到v12,首个以Attention为核心的YOLO框架问世 YOLO 系列模型的结构创新一直围绕 CNN 展开,而让 transformer 具有统治优势的 attention 机制一直不是 YOLO 系列网络结构改进的重点。这主要的原因是 attention 机制的速度无法满足 YOLO 实时性的要求。本周三放出的 YOLOv12 着力改变这一现状
三重注意力(Triplet Attention)的基本原理是利用三支结构捕获输入数据的跨维度交互,从而计算注意力权重。这个方法能够构建输入通道或空间位置之间的相互依赖性,而且计算代价小。三重注意力由三个分支组成,每个分支负责捕获空间维度H或W与通道维度C之间的交互特征。通过对每个分支中的输入张量进行排列变换,然后通过Z池操作...
A2AttentionA2Attention的核心思想是首先将整个空间的关键特征收集到一个紧凑的集合中,然后自适应地将其分布到每个位置,这样后续的卷积层即使没有很大的接收域也可以感知整个空间的特征。第一级的注意力集中操作…
2.在YOLOV8主干中添加SEAttention注意力 第1步:新建SEAttention模块并导入 在ultralytics/nn目录下,新建SEAttention.py文件,内容如下: import numpy as np import torch from torch import nn from torch.nn import init class SEAttention(nn.Module): def __init__(self, channel=512,reduction=16): super...
此外,CloAttention可进一步应用于YOLOv7、YOLOv8等模型中,欢迎大家关注本博主的微信公众号 BestSongC,后续更多的资源如模型改进、可视化界面等都会在此发布。另外,本博主最近也在MS COCO数据集上跑了一些YOLOv5的改进模型,实验表明改进后的模型能在MS COCO 2017验证集上分别涨点1-3%,感兴趣的朋友关注后回复YOLOv5...
💡💡💡本文改进:替换YOLOv10中的PSA进行二次创新,1)CoordAttention注意力替换 PSA中的多头自注意力模块MHSA注意力;2) CoordAttention直接替换 PSA; 💡💡💡CoordAttention优势:不仅会考虑输入的特征信息,还会考虑每个像素点的位置信息,从而更好地捕捉空间上的局部关系和全局关系。
在计算机视觉领域,目标检测任务的性能提升一直是研究热点。我们基于对YoloV8模型的深入理解,创新性地引入了DeBiLevelRoutingAttention(简称DBRA)注意力模块,旨在进一步增强模型的特征提取能力和目标检测精度。 一、改进概述 本次改进的核心在于将DeBiLevelRoutingAttention模块嵌入到YoloV8的主干网络中,具体位置是在SPPF(Spati...
Outlook Attention对于一个中心token,经过简单线性变换,可生成其周围token对应的注意力权重。它避免了与原始self-attention中昂贵的计算代价,同时考虑了细粒度特征和全局信息聚合。这些注意力机制在YOLO目标检测模型中的应用,不仅提升了模型的性能,还为研究人员提供了新的思路和方法。0...
2.attention.py中放入函数名 3.需不需要通道数(True\False) 4.更改配置文件 5.测试 本文在yolo的基础上增加了注意力机制 1.导入类 在ultralytics\nn\models\extra_modules\attention.py中导入想添加的注意力的类,如下图 2.attention.py中放入函数名 ...
在原文件中直接copy一份c2f类的源码,然后命名为c2f_Attention,如下所示: 在不同文件导入新建的C2f类 在ultralytics/nn/modules/block.py顶部,all中添加刚才创建的类的名称:c2f_Attention,如下图所示: 同样需要在ultralytics/nn/modules/__init__.py文件,相应位置导入刚出创建的c2f_Attention类。如下图: ...