If sintheta+cosectheta=2, the value of sin^(100)theta+cosec^(100)the... 02:36 If (sin theta + cos theta)/(sin theta - cos theta) = (5)/(4) , the val... 03:08 (tantheta)/(1-cottheta)+(cottheta)/(1-tantheta) is equal to - 03:34 If tantheta+cottheta=2, then the...
Step by step video & image solution for यदि x = a ( cos theta + theta sin theta ), y= a ( sin theta - theta cos theta ), तो (dy)/(dx) ज्ञात कीजिए । by Maths experts to help you in doubts & scoring excellent marks in Class 12 ex...
在方程\(\left\lbrace\begin{align}& x=sin2\theta,\cr& y=sin\theta+cos\theta\end{align}\right .\)(\(\theta\)为参数)所表示的曲线上的一点的坐标是 ( ) A:\(\left ( 1,\sqrt{3}\right ) \) B:\(\left ( 2,\sqrt{3}\right ) \) C:\(\left (\dfrac{1}{2},-2\right )...
Differentiate: sin^2(cos t). Differentiate. (1) f(x)=(8x^{2}-13x)e^{x} (2) y=\frac{3x}{e^{x Differentiate to find \frac{dy}{dx}. 2x^2 + 4xy + 4y^2 + 11y -2 = 0 Differentiate y = 10x^5 csc(x) . Find y' = ___. Differentiate...
Find the derivative of each function y = cot 2 ( sin theta ) f ( t ) = tan ( e 5 t ) + e tan 5 t y = cos ( cos ( cos x ) ) What is the derivative of x(y^3)\sin x? What is the derivative of y = \frac{2 \sin x}{3-2 \sin x} What is the derivative of ...
因为\(\theta \in \left(0,\dfrac{ \pi }{2}\right)\),所以\(\tan \theta >0\),\(y= \tan \theta +\dfrac{ \cos 2 \theta +1}{ \sin 2 \theta }= \tan \theta +\dfrac{2 \cos ^{2} \theta }{2 \sin \theta \cos \theta }=\tan \theta +\dfrac{1}{ \tan \theta ...
解:∵参数方程 \begin{cases} \overset{x=\cos \theta }{y=2+\sin ^{2}\theta }\end{cases}(θ为参数,且θ∈R),∴由\sin ^{2}θ+\cos ^{2}θ=1,得y-2+x^{2}=1,∴参数方程 \begin{cases} \overset{x=\cos \theta }{y=2+\sin ^{2}\theta }\end{cases}(θ为参数,且θ...
解:\(C _{1}\):\( \begin{cases} {x=5\cos \theta } \\ {y=5\sin \theta }\end{cases} (θ\)为参数\()\),可化为\(x ^{2} +y ^{2} =25\),表示以原点为圆心,\(5\)为半径的圆;\(C _{2}\):\( \begin{cases} {x=4+t\cos 45 ^\circ } \\ {y=3+t\sin...
下列弧微分公式不正确的是 A 曲线 \cases { x = \rho ( \theta ) \cos \theta y = \rho ( \theta ) \sin
(2)证明:球坐标系中两点 (r_1,\theta_1,\phi_1),(r_2,\theta_2,\phi_2) 的距离为 \displaystyle\left(r_1^2+r_2^2-2r_1r_2\left(\cos(\theta_1-\theta_2)\cos^2\frac{\phi_1-\phi_2}2+\cos(\theta_1+\theta_2)\sin^2\frac{\phi_1-\phi_2}2\right)\right)^\frac12。