【答案】:4个函数都是奇函数,所围成的区域关于原点对称,计算在第一象限的部分面积,再乘以2.x>0时y=a/x与y=px交于点A(√(a/p),√(ap)),与y=qx交于点B(√(a/q),√(aq));y=b/x与y=px交于点D(√(b/p),√(bp)),与y=qx交于点C(√(b/q),√(bq)).由0<a<b,0<...
2)作曲线坐标变换:xy=u,y/x=v,计算雅可比行列式,J=2/v,∴所求面积=2∫<a,b>du∫<p,q>2dv/v=4(b-a)ln(q/p).仅供参考。
x2=byyx2=ayy2=qxy^2=px0图10.14设D是由四条抛物线 y^2=px , y^2=qx x^2=ay , x^2=by(0pq,0 ab)所围成的区域(图10.14).计算D的面积和二重积分A=∫_0^x1/(xy)dxdy 答案 解引入参数u,v,使得y2=ux, x^2=vy ,其中 p≤u≤q , a≤v≤b .这说明,在这种变换之下,图形D变...
6、曲线。4)几种常见的微分方程1、可分离变量的微分方程一般形式形式:y=f(x,y)对称形式:p(x,y)dx+q(x,y)dy=0(x,y都可以看做函数,另一个为自变量)即:字=-忖(q(x,yh0)或=-铝(p(x,y)M0)dxqx,ydypx,y可分离变量:如果一阶微分方程能写成g(y)dy=f(x)dx的形式。特点:一端只含y的函数和...
y²因为0≤(py-qx)²所以2pqxy≤p²y²+q²x²所以p²x²+2pqxy+q²y²≤p²x²+p²y²+q²x²+q²y²即得(px+qy)²≤(p²+q²)(x²+y²)
We read every piece of feedback, and take your input very seriously. Include my email address so I can be contacted Cancel Submit feedback Saved searches Use saved searches to filter your results more quickly Cancel Create saved search Sign in Sign up Reseting focus {...
+35p+o4by/31UR5vt52MFnvUE0RiZ8AFTGZgp5bBLUExweUjxs4mZToyxjqi4NZFxHJu0iKuFPdthoIMUpkxCDRBmiBee4jWFGJHi96P2t6L0616rgU4KiKXViSSzQjVCJiabqKlYWz/Krd4j3u2eU8eQQTsQRsjCxtd9KWJD2SgvbJD88E4DFOPrm2CWPynGXwPSlD348srrTB1IKX4ye0BKNA4sYsOsmOpg6JBcuZyEAx/ISvEJ+dILAS8uf79jy4uo1Grw1vxYjP...
define(function(){return p}):"object"===typeof module&&module.fX?module.fX=p:a.md5=p})(this);function jb(){function a(){if(1===arguments.length&&"object"===typeof arguments[0]){var a=arguments[0]||{};for(key in a)if(!a[key]||!(g[key]&&a[key]===g[key]))if(a[...
+88sN9NfoqxNOSBuRUz5nLglvOzb\/54vyN5+TgTfftGEzvs49A50XAJ4DO61PUIngb4o\/21f70keqP99emp1kaOAVX3nJVz9KFwTUb6N1dGP39C3hRx\/iKj8AciIBPAHOgE06JC784XP\/WE9X\/vbdGlwnBB9JAyzOBHPeL3QT2ZL5rS\/7VF\/hXcZ2S3vVGfASaioBPAE2FrW2VDo82fvhi7W+fqz1ytD4wxjIBXy\/U9KwMYPB\/sCFFF9m8KvfqTfn...
# JigsawDownload # See <http://atterer.net/jigdo/> for details about jigdo # See <http://www.einval.com/~steve/software/CD/JTE/> for details about JTE [Jigdo] Version=1.1 Generator=JTE/1.15 [Image] Filename=ubuntu-10.04-server-i386.iso Template=ubuntu-10.04-server-i386.template Template...