1 概念小样本学习(few-shot learning,FSL)旨在从有限的标记实例(通常只有几个)中学习,并对新的、未见过的实例进行识别。 相比于传统的深度学习和机器学习方法,小样本学习能够更好地模拟人类的学习方式,因为人类在学习新事物时通常只需要很少的示例即可,即从人工智能到人类智能转变。首先,在FSL设置中,通常有三组数据...
小样本学习方法分类基于模型微调的小样本学习方法基于数据增强的小样本学习基于无标签数据的方法基于数据合成的方法基于特征增强的方法基于迁移学习的小样本学习基于度量学习的方法基于元学习的方法基于图神经网络的方法展望小样本学习目标:从少量样本中学习到解决问题的方法。 本文将小样本学习分为基于模型微调、基于数据增强...
目录浅述小样本学习以及元学习基于度量的元学习基于模型的元学习基于优化的元学习总结浅述小样本学习以及元学习自深度学习发展起来之后, 智能化的各种设备也慢慢变多,但是对于智能化的程序来说,需要数以万计甚至百万千万的数据行进训练,以近年来最为出名的AlphaGo为例,虽然下棋的是一台电脑,但其后台需要庞大的数据支持...
1.小样本学习背景 Few-Shot Learning,国外一般叫缩写FSL,国内翻译为小样本学习。但是我觉得翻译的并不是很好,并没有体现FSL的核心思想。我的理解FSL的核心是通过某种方法(现在通常是元学习的方法)利用通用数据得到泛化能力较强的预训练模型,然后在下游任务中根据预训练模型微调或者其他方法得到新模型。所以FSL其实是 ...
小样本学习(FSL)的定义:机器学习的一种,它学习用到的经验中只有少量样本有关于任务的监督信号。 为什么要进行小样本学习:由于高质量的标注数据其实在现实工作中还是比较少的,所以利用小样本就能做好深度学习任务对于样本不够的任务是非常重要的,它可以降低数据的收集以及标注,可以让人工智能更像人类,能够举一反三,还...
1. 小样本学习背景Few-Shot Learning,国外一般叫缩写FSL,国内翻译为小样本学习。但是我觉得翻译的并不是很好,并没有体现FSL的核心思想。我的理解FSL的核心是通过某种方法(现在通常是元学习的方法)利用通用数据得到泛化能力较强的预训练模型,然后在下游任务中根据预训练模型微调或者其他方法得到新模型。所以FSL其实是 ...
小样本学习(FSL)的定义:机器学习的一种,它学习用到的经验中只有少量样本有关于任务的监督信号。 为什么要进行小样本学习:由于高质量的标注数据其实在现实工作中还是比较少的,所以利用小样本就能做好深度学习任务对于样本不够的任务是非常重要的,它可以降低数据的收集以及标注,可以让人工智能更像人类,能够举一反三,还...
1.小样本学习背景 Few-Shot Learning,国外一般叫缩写FSL,国内翻译为小样本学习。但是我觉得翻译的并不是很好,并没有体现FSL的核心思想。我的理解FSL的核心是通过某种方法(现在通常是元学习的方法)利用通用数据得到泛化能力较强的预训练模型,然后在下游任务中根据预训练模型微调或者其他方法得到新模型。所以FSL其实是 ...
为了达到这个目的,应该从训练样本中尽可能学出适用于所有潜在样本的“普遍规律”。然而,学得“太好”很可能出现过拟合现象。提高泛化能力的方法有很多,其中一种可以增加样本数量。但是当带标签的样本数量有限时,该如何处理?如果只有一个包含m个样例的数据集D={(x1,y1),(x2,y2)...(x...
目录12.1 模式和模式类12.2 基于决策理论方法的识别12.2.1 匹配12.2.2 最佳统计分类器12.2.3 神经网络12.3 结果方法12.3.1 匹配形状数12.3.2 串匹配本章介绍的模式识别方法主要分为两大邻域:决策理论犯法和结构方法。第一类方法处理的是使用定量描绘子来描述各种模式,如长度、面积和纹理等。 &nbs ...