# 初始化XGBClassifier model = XGBClassifier(use_label_encoder=False, eval_metric='logloss') # 训练模型 model.fit(X_train, y_train) # 预测并评估 y_pred = model.predict(X_test) print(f'Accuracy: {accuracy_score(y_test, y_pred)}') 参数调优 XGBClassifier拥有众多参数,通过调整这些参数可以优...
错误:'XGBClassifier‘对象没有'use_label_encoder’属性EN从事数据挖掘相关工作的人肯定都知道XGBoost算法...
(use_label_encoder=False, eval_metric='mlogloss') # 训练模型并启用早停 eval_set = [(X_test, y_test)] model.fit(X_train, y_train, early_stopping_rounds=10, eval_set=eval_set, verbose=True) # 在测试集上进行预测并评估性能 y_pred = model.predict(X_test) accuracy = accuracy_score(...
i cloned your code and also implemented it locally and i got the same result AttributeError: 'XGBClassifier' object has no attribute 'use_label_encoder' . I did search for the info and saw some people said some people said use xgb.train(...
Support GPU input inXGBClassifier; deprecate the use of label encoder#6232 conda, xgboost 1.2.0 , rapids 0.14, Ubuntu 18.04 LTS, GeForce RTX 2080, cuda 10.0. While the non-sklearn API can take cudf, the sklearn API fails with the error in the title. ...
XGBClassifier(*, objective='binary:logistic', use_label_encoder=None, input_cols: str | Iterable[str] | None = None, output_cols: str | Iterable[str] | None = None, label_cols: str | Iterable[str] | None = None, drop_input_cols: bool | None = False, sample_weig...
问F1/F0.5评分作为eval_metric在XGBClassifier中的应用ENEDI最初是在由美国企业应用在企业间订货业务活动...
错误:'XGBClassifier‘对象没有'use_label_encoder’属性EN从事数据挖掘相关工作的人肯定都知道XGBoost算法...
错误:'XGBClassifier‘对象没有'use_label_encoder’属性EN从事数据挖掘相关工作的人肯定都知道XGBoost算法...