2 md-writer ✒️ Make Atom a better Markdown/AsciiDoc editor for writers and bloggers zhuochun 340 3 language-babel ES2017, flow, React JSX and GraphQL grammar and transpilation for ATOM gandm 476 4 atom-wikilink Atom package to add wiki-style links between notes Zettelkasten-Method ...
# 需要导入模块: import torch [as 别名]# 或者: from torch importonnx[as 别名]defonnx_inference(args):# Load the ONNX modelmodel =onnx.load("models/deepspeech_{}.onnx".format(args.continue_from))# Check that the IR is well formedonnx.checker.check_model(model)onnx.helper.printable_...
a. The standard defines the attribute chart:sort-by-x-values This attribute is supported in Microsoft Excel 2013 and
I changethis lineinmodel/yolo.py, and then pass both--gridand--grid --simplify. Onnx runtime works fine too # y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # why[...,2:4]=(y[...,2:4]*2)**2*torch.tensor(self.anchor_grid[i].tolist()).floa...
开发者ID:BackupTheBerlios,项目名称:snns-dev-svn,代码行数:101,代码来源:o_graph.c 示例4: winopen ▲点赞 1▼ voidwinopen(void){ XWMHints *hints; xdpy = XOpenDisplay(nil);if(!xdpy) winerror(&gapp,"could not open display.");
['classes', 'boxes'] if y is None else ['output']) # Checks onnx_model = onnx.load(f) # load onnx model onnx.checker.check_model(onnx_model) # check onnx model print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model print('ONNX export success, ...
How do i draw points or plot points on ZedGraph control ? How do I eliminate the "Naming rule violation" feature? How do i enable/disable a checkbox in a checklistbox? How do I export an enum from my dll? How do i Extract an icon from a dll (ExtractIcon - Shell32.dll) How do...
print(onnx.helper.printable_graph(model_onnx.graph))# print ifdo_simplify: print(f'simplifying with onnx-simplifier{onnxsim.__version__}...') model_onnx,check=onnxsim.simplify(model_onnx,check_n=3) assertcheck,'assert check failed' ...
model = onnx.load(S_ONNX_MODEL_PATH +".onnx")print(onnx.checker.check_model(model))# Check that the model is well formedprint(onnx.helper.printable_graph(model.graph))# Print a human readable representation of the graphls_input_name, ls_output_name = [input.nameforinputinmodel.graph...
'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None) # Checks model_onnx = onnx.load(f) # load onnx model onnx.checker.check_model(model_onnx) # check onnx model # print(onnx.helper.printable_graph(model_onnx.graph)) # print ...