,方差公式为:推导过程: 使用分部积分,得到 。 再次分部积分,结果为 。方差 为 相关概念 协方差 设X,Y为两个随机变量,记 称 为 的协方差,记为 ,Cov是协方差(Covariance)的缩写。协方差具有以下一些重要性质:1.如果两个随机变量 和 相互独立,则它们的协方差为零,即:但反之不一定成立,即协...
1.x y的方差公式是什么? 答:D(XY) = D(X)D(Y)。 解题过程如下: D(XY) = E{[XY-E(XY)]^2} = E{X²Y²-2XYE(XY)+E²(XY)} = E(X²)E(Y²)-2E²(X)E²(Y)+E²(X)E²(Y) = E(X²)E(Y²)-E²(X)E²(Y) 如果E(X) = E(Y) = 0, 那么D(...
若X与Y相互独立,关于方差的计算公式为:D(X+Y)=D(X-Y)=DX+DY-2COV(X,Y)由于X与Y相互独立,其协方差COV(X,Y)为0。因此,方差计算简化为:D(X+Y)=D(X-Y)=DX+DY 使用定义进行方差计算需要一定耐心,但结果相同。
DX的值为p*q。计算过程:方差的计算公式:D(X)=(E[X-EX])^2=E(X^2)-(EX)^2 由题目为二项分布,所以EX=p,同时EX^2=p。D(X)=E(X^2)-(EX)^2=p-p^2=p*(1-p)=p*q。所以说DX的值为p*q。
若两个随机变量X和Y相互独立,那么两个随机变量的和的方差等于各自方差的和: D(X+Y) = D(X)+D(Y) (1)这是因为:D(X+Y) = E{(X+Y)-[E(X)+E(Y)]}^2 = E{[X-E(X)]+[Y-E(Y)]}^2 = E[X-E(X)]^2 + 2E{[X-E(X)][Y-E(Y)]} + E[Y-E(Y)]^2 = D(X) + D(Y...
其中:E[X] 和 E[Y] 分别是随机变量 X 和 Y 的期望值, cov 是协方差的英文 “covariance” 的缩写。当协方差为正值时,表明随机变量X和Y倾向于同时偏离其平均值,呈正相关关系;反之,若协方差为负值,则表明一个变量高于平均值时,另一个倾向于低于平均值,呈负相关关系。如果协方差为零,这意味着两个...
若两个随机变量X和Y相互独立,那么两个随机变量的和的方差等于各自方差的和: D(X+Y) = D(X)+D(Y) (1)这是因为:D(X+Y) = E{(X+Y)-[E(X)+E(Y)]}^2 = E{[X-E(X)]+[Y-E(Y)]}^2 = E[X-E(X)]^2 + 2E{[X-E(X)][Y-E(Y)]} + E[Y-E(Y)]^2 = D(X) + D(Y...
线性组合的方差计算公式为:Var(Z) = a^2 * Var(X) + b^2 * Var(Y) + 2ab * Cov(X, Y)其中,Var(Z) 表示线性组合 Z 的方差;a 和 b 是常数,表示线性组合中每个随机变量的系数;Var(X) 和 Var(Y) 分别表示随机变量 X 和 Y 的方差;Cov(X, Y) 表示随机变量 X 和 Y 的...
这个说法有多处错误:第一,X拔的方差是σ^2/n。第二,X与X拔不独立,方差不能拆开。第三,即使能拆开,D(X-Y)=D(X)+D(Y)不是相减。