简单分析一下,详情如图所示
∫∫∫(Ω)(x+y+z)dv =∫∫∫(Ω)xdv+∫∫∫(Ω)ydv+∫∫∫(Ω)zdv 由于对称性,x,y,z都是奇函数, 则积分为零。如果一定要化为三次积分,用球坐标计算如下:∫∫∫<Ω>(x+y+z)dv = ∫<0,π>dφ∫<0,2π>dθ∫<0,r>ρ(sinφcosθ+sinφsinθ+cosφ)ρdρ = (r^...
:chains: A Framework for Building High Value Public Blockchains :sparkles: - cosmos-sdk/x/distribution/go.sum at 7f848157165a41704bd1443250939cbc0691829a · baron-chain/cosmos-sdk
百度试题 结果1 题目8.计算zdV,其中V是由 z=x^2+y^2 与 =1所围成的区域 相关知识点: 试题来源: 解析 8.令 D_z=((x,y):x^2+y^2=z) .则∫∫_y^1zdV=∫_0^1[∫_0^xdx dy zdz=∫_0^1πz^2dz=π/(3) 反馈 收藏
I8ZDVZ7R0ISHwqZdxr3stbHbC3CCpt2gzPpc/FP5YYBOGB4wxhUDcjPyuIYiM561+sB+JfH//l5c 2PA2OGuSFYbxuqXQ/1MU/g998zTqOUegnT4YPgP/B056VoVNfxvspHHyyUBSnTrldbnmBI4xDzkY hp2S+YCA/v/7IWsoh5BpBDUGtIxkSqHWbwHOG3EOJNm/DefGw1xpIJM+g/7f71jm2a4Cfgc4cm36 V18EKnPidDj6c4i+QWk5FE+Np4EmdH4NdEYz...
∫∫∫(Ω)(x+y+z)dv =∫∫∫(Ω)xdv+∫∫∫(Ω)ydv+∫∫∫(Ω)zdv 由于对称性,x,y,z都是奇函数, 则积分为零。如果一定要化为三次积分,用球坐标计算如下:∫∫∫<Ω>(x+y+z)dv = ∫<0,π>dφ∫<0,2π>dθ∫<0,r>ρ(sinφcosθ+sinφsinθ+cosφ)ρdρ = (r^...
zDvX5EIxqNSULH33yeUNQj3rdgj1XVpaG+C52OyUwYxi5aM5OWEybpTCHlH2gApf9ah74Az1QIVY pwuqSuZ68vfU9vzF/PwSMmrur9K9AdZyp+mEVcaMCSOoK1sYHEMG8M/yR2AHoV6nQNM/nnYP6l9P N7R4+j6T9cfpJmNx2dbFl3Hf+30pQuO+NQpucZM29dj1TlQqeaZbI1gwXsSNm27xeFVMsOBiGsAL F00p2p1QuXnd2dIdAHgxOXl9bkFq49K7i4d...
Android/Hiddad.dvzdv Android/Hiddad.dwlbz Android/Hiddad.dwlcd Android/Hiddad.dwlcj Android/Hiddad.dwmcg Android/Hiddad.dwxve Android/Hiddad.dwxvf Android/Hiddad.dwxvk Android/Hiddad.dwxvp Android/Hiddad.dwxvt Android/Hiddad.dwxvu Android/Hiddad.dxdgq Android/Hiddad.dxdgv Android/Hiddad...
nAzAndldyAAEHRMDqKooSWQyB3KCooru5Ny3GxhKUfan77Y5EYuq7riOJBFC0EhHhgQt9mFq5Gije\nkQDczdRKVrOqqpEFESWQo7h7VTMzRi11wrxzWQFACKFmFwlHRyeLfkmXNwGiAYXQEYPNZfapUUEq\nQK0156wxhciAxoKn56dH6xWDxyBvP3r46YPjr66u6rwf+l5LmGeQEGuuLEE4OSiTPXr06IPHjzDv\nL55ervpufbIahm45xN3+arYJE8ZFWCyXxpi60LGYu...
如图所示: