先看短文本,会发现word2vec和doc2vec表现相对一致,召回的相似文本一致,因为对短文本来说上下文信息的影响会小。 在长文本上(文本太长不方便展示,详见JupyterNotebook),word2vec和doc2vec差异较明显,但在随机选取的几个case上,并不能明显感知到doc2vec在长文本上的优势,当然这可能和模型参数选择有关。 对此更有...
Doc2vec是Mikolov在word2vec基础上提出的另一个用于计算长文本向量的工具。它的工作原理与word2vec极为相似——只是将长文本作为一个特殊的token id引入训练语料中。在Gensim中,doc2vec也是继承于word2vec的一个子类。因此,无论是API的参数接口还是调用文本向量的方式,doc2vec与word2vec都极为相似。 主要的区别是...
1.词向量建模的word2vec模型和用于长文本向量建模的doc2vec模型 在Gensim中实现word2vec模型非常简单.首先,我们需要将原始的训练语料转化成一个sentence的迭代器:每一次迭代返回的sentence是一个word(utf8格式)的列表: class MySentences(object): def __init__(self, dirname): self.dirname = dirname def __...