ChatGPT 的意外成功突然带来了各种令人兴奋的可能性。就目前而言,我们能马上抓住的机会是,通过 Wolfram|Alpha 赋予 ChatGPT计算知识超能力。这样,ChatGPT 不仅可以产生“合理的类人输出”,而且能保证这些输出利用了封装在 Wolfram|Alpha 和 Wolfram语言内的整座计算和知识高塔。——互动问题——你用ChatGPT做了什么?
全世界的用户可以通过网页、Siri、Alexa包括ChatGPT插件来使用这一强大的系统。 如果我们拿ChatGPT代表的神经网络来看Wolfram的理论,就会发现一种暗合关系:GPT底层的自回归架构,与很多机器学习模型相比,的确可以归类为“规则简单的计算”,而其能力也是通过量变累积之下涌现出来的。 Wolfram经常为好莱坞的科幻电影做技术支持,...
对于这些事物,ChatGPT 只能靠自己,而且能凭借自己的能力做得非常出色。 就像我们人类一样,ChatGPT 有时候需要更形式化和精确的“助力”。重点在于,它不必用“形式化和精确”的语言表达自己,因为 Wolfram|Alpha 可以用相当于 ChatGPT 母语的自然语言进行沟通。当把自然语言转换成自己的母语 —Wolfram 语言时,Wolfram|...
全世界的用户可以通过网页、Siri、Alexa包括ChatGPT插件来使用这一强大的系统。 如果我们拿ChatGPT代表的神经网络来看Wolfram的理论,就会发现一种暗合关系:GPT底层的自回归架构,与很多机器学习模型相比,的确可以归类为“规则简单的计算”,而其能力也是通过量变累积之下涌现出来的。 Wolfram经常为好莱坞的科幻电影做技术支持,...
ChatGPT的基本概念在某种程度上相当简单:首先从互联网、书籍等获取人类创造的海量文本样本,然后训练一个神经网络来生成“与之类似”的文本。特别是,它能够从“提示”开始,继续生成“与其训练数据相似的文本”。 正如我们所见,ChatGPT中的神经网络实际上由非常简单的元...
ChatGPT的基本概念在某种程度上相当简单:首先从互联网、书籍等获取人类创造的海量文本样本,然后训练一个神经网络来生成“与之类似”的文本。特别是,它能够从“提示”开始,继续生成“与其训练数据相似的文本”。 正如我们所见,ChatGPT中的神经网络实际上由非常简单的元素组成,尽管有数十亿个。神经网络的基本操作也非常...
ChatGPT的基本概念在某种程度上相当简单:首先从互联网、书籍等获取人类创造的海量文本样本,然后训练一个神经网络来生成“与之类似”的文本。特别是,它能够从“提示”开始,继续生成“与其训练数据相似的文本”。 正如我们所见,ChatGPT中的神经网络实际上由非常简单的元素组成,尽管有数十亿个。神经网络的基本操作也非常...
从根本上说,ChatGPT是一个庞大的神经网络—GPT-3 拥有1750亿个权重。它在许多方面非常像我们讨论过的其他神经网络,只不过是一个特别为处理语言而设置的神经网络。它最显著的特点是一个称为Transformer 的神经网络架构。 在前面讨论的神经网络中,任何给定层的每个神经元基本上都与上一层的每个神经元相连(起码有一些...
在线阅读《这就是ChatGPT》。
著有畅销书《一种新科学》《这就是ChatGPT》《计算探索者之旅》《创想者》等。 伊利诺斯大学物理学、数学和计算机科学教授。 2009年5月,沃尔弗拉姆发布了一个搜索引擎WolframAlpha。“第一个真正实用的人工智能”。可以给出针对问题的有效答案,所以,WolframAlpha问世不久后便被称为“谷歌杀手”。