至此环境准备完毕,可以按照项目内的数据格式和要求进行准备数据了。我这边finetune后的结果是正常的。如下:
--- Configuration Arguments --- audio_path: dataset/test.wav model_path: models/whisper-tiny-finetune-ct2 language: zh use_gpu: True use_int8: False beam_size: 10 num_workers: 1 vad_filter: False local_files_only: True --- [0.0 - 8.0]:近几年,不但我用书给女儿压碎,也全说亲朋不...
Fine-tune the Whisper speech recognition model to support training without timestamp data, training with timestamp data, and training without speech data. Accelerate inference and support Web deployment, Windows desktop deployment, and Android deployment
这周又出现了gpt4all,基于 LLaMA 7B模型,采集近80万的GPT-3.5-Turbo对话数据进行finetune,效果看起来比 LLaMA 7B 要好。作者发布了他们训练好的经过量化的模型,大小3.9G,以及可以直接在PC上运行的二进制聊天程序,可以直接在各个平台运行。 然后长久以来的TODO 可以实现了,在缝合了talkGPT和GPT4All后,就有了talkG...
Windows单机单卡基于LLaMA-Factory来微调训练finetune无审查AI大语言模型(NSFW) 06:43 text-generation-webui新版整合包,运行多种类无审核大模型,接入GPT-SoVITS/Bert-vits2 04:10 llama3中文无内容审查大模型整合包(NSFW),AI女友再度进化,llama3-8b-chinese-uncensored 08:46 llama3-novel中文写作模型,绅士小...
finetune.py:微调模型。 merge_lora.py:合并Whisper和Lora的模型。 evaluation.py:评估使用微调后的模型或者Whisper原模型。 infer_tfs.py:使用transformers直接调用微调后的模型或者Whisper原模型预测,只适合推理短音频。 infer_ct2.py:使用转换为CTranslate2的模型预测,主要参考这个程序用法。
We use the LoRA implementation from Hugging Face’speftpackage. There are four steps to fine-tune a model using LoRA: Instantiate a base model (as we did in the last step). Create a configuration (LoraConfig) where LoRA-specific parameters are defined. ...
手动狗头,夹带私货),finetune一下把模型变得可以实时。
[WFTE] Fine-tune Whisper using the CLI - Part 2 HuggingFace 22 0 [WFTE] Instantiate a GPU on Lambda - Part 2 HuggingFace 19 0 [WFTE] Create a Gradio Demo for your fine-tuned Whisper model HuggingFace 72 0 [WFTE] Instantiate a GPU on Lambda - Part 1 HuggingFace 29 0 [Whisp...
To fine-tune a Whisper model on a custom dataset, the train/fine-tune_on_custom_dataset.py file can be used.Following is a sample command to perform the same:ngpu=4 # number of GPUs to perform distributed training on. torchrun --nproc_per_node=${ngpu} train/fine-tune_on_custom_...