Were RNNs All We Needed?在本节中,研究者将对最小版本(minLSTMs 和 minGRUs)与传统版本(LSTMs 和 GRUs)以及现代序列模型进行了比较。Minimal LSTMs 和 GRU 非常高效 在测试时,循环序列模型会按顺序推出,从而使其推理更为高效。相反,传统 RNN 的瓶颈在于其训练,需要线性训练时间(通过时间反向传播),...
Were RNNs All We Needed? 在本节中,研究者将对最小版本(minLSTMs 和 minGRUs)与传统版本(LSTMs 和 GRUs)以及现代序列模型进行了比较。 Minimal LSTMs 和 GRU 非常高效 在测试时,循环序列模型会按顺序推出,从而使其推理更为高效。相反,传统 RNN 的瓶颈在于其训练,需要线性训练时间(通过时间反向传播),这导致...
2.2 经典RNN并行化 2.2.1 理论基础 通过前文介绍,我们回顾了经典RNN的递归更新公式,但显然,无法直接沿用parallel scan算法进行并行 LSTM递归更新公式: \begin{aligned}& \textbf{Memory Cell:} &C(t) & =C(t-1) \odot F(t) + I(t) \odot \widetilde{C}(t) \\ & \textbf{Hidden State:} &H(...
Were RNNs All We Needed? 在本节中,研究者将对最小版本(minLSTMs 和 minGRUs)与传统版本(LSTMs 和 GRUs)以及现代序列模型进行了比较。 Minimal LSTMs 和 GRU 非常高效 在测试时,循环序列模型会按顺序推出,从而使其推理更为高效。相反,传统 RNN 的瓶颈在于其训练,需要线性训练时间(通过时间反向传播),这导致...
Were RNNs All We Needed? 在本节中,研究者将对最小版本(minLSTMs 和 minGRUs)与传统版本(LSTMs 和 GRUs)以及现代序列模型进行了比较。 Minimal LSTMs 和 GRU 非常高效 在测试时,循环序列模型会按顺序推出,从而使其推理更为高效。相反,传统 RNN 的瓶颈在于其训练,需要线性训练时间(通过时间反向传播),这导致...
Were RNNs All We Needed? 在本节中,研究者将对最小版本(minLSTMs 和 minGRUs)与传统版本(LSTMs 和 GRUs)以及现代序列模型进行了比较。 Minimal LSTMs 和 GRU 非常高效 在测试时,循环序列模型会按顺序推出,从而使其推理更为高效。相反,传统 RNN 的瓶颈在于其训练,需要线性训练时间(通过时间反向传播),这导致...
Were RNNs All We Needed? 在本节中,研究者将对最小版本(minLSTMs 和 minGRUs)与传统版本(LSTMs 和 GRUs)以及现代序列模型进行了比较。 Minimal LSTMs 和 GRU 非常高效 在测试时,循环序列模型会按顺序推出,从而使其推理更为高效。相反,传统 RNN 的瓶颈在于其训练,需要线性训练时间(通过时间反向传播),这导致...
Were RNNs All We Needed? 在本节中,研究者将对最小版本(minLSTMs 和 minGRUs)与传统版本(LSTMs 和 GRUs)以及现代序列模型进行了比较。 Minimal LSTMs 和 GRU 非常高效 在测试时,循环序列模型会按顺序推出,从而使其推理更为高效。相反,传统 RNN 的瓶颈在于其训练,需要线性训练时间(通过时间反向传播),这导致...
In this work, we revisit traditional recurrent neural networks (RNNs) from over a decade ago: LSTMs (1997) and GRUs (2014). While these models were slow due to requiring to backpropagate through time (BPTT), we show that by removing their hidden state dependencies from their input, ...
Were RNNs All We Needed? 在本节中,研究者将对最小版本(minLSTMs 和 minGRUs)与传统版本(LSTMs 和 GRUs)以及现代序列模型进行了比较。 Minimal LSTMs 和 GRU 非常高效 在测试时,循环序列模型会按顺序推出,从而使其推理更为高效。相反,传统 RNN 的瓶颈在于其训练,需要线性训练时间(通过时间反向传播),这导致...