将每个类的 Dice 损失求和取平均,得到最后的 Dice soft loss。 下面是代码实现: def soft_dice_loss(y_true, y_pred, epsilon=1e-6):'''Soft dice loss calculation for arbitrary batch size, number of classes, and number of spatial dimensions.Assumes the `channels_last` format.# Argumentsy_true:...
一、cross entropy loss 二、weighted loss 三、focal loss 四、dice soft loss 五、soft IoU loss 总结: 一、cross entropy loss 用于图像语义分割任务的最常用损失函数是像素级别的交叉熵损失,这种损失会逐个检查每个像素,将对每个像素类别的预测结果(概率分布向量)与我们的独热编码标签向量进行比较。 假设我们需要...
对于每个类别的mask,都计算一个 Dice 损失: 将每个类的 Dice 损失求和取平均,得到最后的 Dice soft loss。 下面是代码实现: def soft_dice_loss(y_true, y_pred, epsilon=1e-6):'''Soft dice loss calculation for arbitrary batch size, number of classes, and number of spatial dimensions.Assumes the...
尤其注意“加权交叉”
focal loss的设计很巧妙,就是在cross entropy的基础上加上权重,让模型注重学习难以学习的样本,训练数据不均衡中占比较少的样本,相对放大对难分类样本的梯度,相对降低对易分类样本的梯度,并在一定程度上解决类别不均衡问题。 如果将cross loss定义为: ...
ENTROPYTIME complexityThis article introduces and evaluates a novel Deep Neural Network (DNN) designed specifically for brain stroke detection. Highlighting the innovation of using a weighted Binary Cross Entropy (BCE) loss function to address dataset imbalances, this work also aims to prop...
使用不含全连接层的VGG16网络[35],并且仿照[27]使用binary cross entropy loss进行预测。解码器的结构和编码器的结构相同,但是是相反的顺序,并且用池化层取代了上采样层。解码器的权重是随机初始化的,最后的损失是内容损失和对抗损失的和。 Saliency Attentive Model[8] 是使用LSTM反复不断的对显著图进行预测。
I follow@velikodniyto add the Weighted BCEloss, where the weights can be computed dynamically for each batch: defweighted_binary_cross_entropy(sigmoid_x,targets,pos_weight,weight=None,size_average=True,reduce=True):"""Args:sigmoid_x: predicted probability of size [N,C], N sample and C Cla...
To address this issue, an onset and offset weighted binary cross-entropy (OWBCE) loss function is proposed in this paper, which trains the DNN model to be more robust on frames around (a) onsets and offsets. Experiments are carried out in the context of DCASE 2022 task 4. Results show...
weighted_cross_entropy_with_logits(targets, logits, pos_weight, name=None): 此函数功能以及计算方式基本与tf_nn_sigmoid_cross_entropy_with_logits差不多,但是加上了权重的功能,是计算具有权重的sigmoid交叉熵函数 计算方法 : posweight∗targets∗−log(sigmoid(logits))+(1−targets)∗−log(1−...