刚才的例子也告诉我们,Wasserstein distance是可以定义两个support不重合,甚至一点交集都没有的分布之间的距离的,而KL在这种情况并不适用。维基中也给出了两个正态分布的Wasserstein distance (p=2时候) 的公式,大家可以去看一下,正好是两部分的和,一部分代表了中心间的几何距离,另一部分代表了两个分布形状上...
另一部分代表了两个分布形状上的差异。现在返回去看上面KL时候举的那个例子,它们之间的Wasserstein dista...
Here, we propose a new information-geometrical theory that is a unified framework connecting the Wasserstein distance and Kullback-Leibler (KL) divergence. We primarily considered a discrete case consisting of $n$ elements and studied the geometry of the probability simplex $S_{n-1}$, which is...
之前在《关于GAN的一些笔记》中写到了 Wasserstein distance 相较于 JS/KL divergence 的优越性。就算PG,PdataPG,Pdata之间没有重叠也可以衡量两个分布的距离。 当然,W(P,Q)=infγ∈Π(Pdata,PG)E(x,y)∼γ[∥x−y∥]W(P,Q)=infγ∈Π(Pdata,PG)E(x,y)∼γ[‖x−y‖]这种形式没法直接...
之前在《关于GAN的一些笔记》中写到了 Wasserstein distance 相较于 JS/KL divergence 的优越性。就算 $P_G, P_{data}$ 之间没有重叠也可以衡量两个分布的距离。 当然,$W(P,Q) = \inf\limits_{\gamma \in \Pi(P_{data},P_G)} E_{(x,y) \sim \gamma}[\left \| x-y \righ...
python实现: 7.推土机距离(Wassersteindistance、Earth Mover's Distance...熵就越大。分布越有序(或者说分布越集中),信息熵就越小。 欧氏距离损失经常用在线性回归问题(求解的是连续问题)中,而交叉熵损失经常用在逻辑回归问题(求解的是离散的分类问题)上,用来作为预测值和真实标签 ...
Wasserstein Distance Rivals Kullback-Leibler Divergence for Knowledge Distillation 来自 arXiv.org 喜欢 0 阅读量: 1 作者:J Lv,H Yang,P Li 摘要: Since pioneering work of Hinton et al., knowledge distillation based on Kullback-Leibler Divergence (KL-Div) has been predominant, and recently its ...
Information Geometry.In information geometry, [17] studied the connections between the Wasserstein distance and the Kullback-Leibler (KL) divergence employed by early GANs. They exploit the fact that by regularizing the Wasserstein distance with entropy, the entropy relaxed Wasserstein distance introduces...
在学习Wasserstein距离,首先回顾在机器学习算法中,衡量两个分布相似程度的指标常常是KL散度(Kullback-Leibler Divergence)以及JS散度 (Jensen-Shannon Divergence)。 KL散度 KL散度描述的是,评价训练所得的概率分布p与目标分布q之间的距离,可以表示为 机器学习的算法最终的目的是缩小 ...
Therefore, the EM distance is the ‘cost’ of the optimal transportation plan. In deep learning, least squares, KL divergence, and cross entropy are often used as loss functions. These traditional distances are compared by the probability density function of the corresponding points, but most of...