然而,VAE的编码器输出概率分布的参数(均值和方差)。模型从这个分布中采样一个点,然后将其输入到解码器中。 我们使用ELBO作为损失函数。 VAE存在后验崩溃的问题:模型中的正则化项开始主导损失函数,后验分布变得与先验分布相似。解码器变得过于强大,忽略了潜在表示。因此后验分布将不包含有关潜在变量的信息。 在VQ-VA...
然而,VAE的编码器输出概率分布的参数(均值和方差)。模型从这个分布中采样一个点,然后将其输入到解码器中。 我们使用ELBO作为损失函数。 VAE存在后验崩溃的问题:模型中的正则化项开始主导损失函数,后验分布变得与先验分布相似。解码器变得过于强大...
然而,VAE的编码器输出概率分布的参数(均值和方差)。模型从这个分布中采样一个点,然后将其输入到解码器中。 我们使用ELBO作为损失函数。 VAE存在后验崩溃的问题:模型中的正则化项开始主导损失函数,后验分布变得与先验分布相似。解码器变得过于强大,忽略了潜在表示。因此后验分布将不包含有关潜在变量的信息。 在VQ-VA...
然而,VAE的编码器输出概率分布的参数(均值和方差)。模型从这个分布中采样一个点,然后将其输入到解码器中。 我们使用ELBO作为损失函数。 VAE存在后验崩溃的问题:模型中的正则化项开始主导损失函数,后验分布变得与先验分布相似。解码器变得过于强大,忽略了潜在表示。因此后验分布将不包含有关潜在变量的信息。 在VQ-VA...
矢量量化变分自编码器(VQ-VAE) 离散表示可以有效地用来提高机器学习模型的性能。人类语言本质上是离散的,使用符号表示。我们可以使用语言来解释图像。因此在机器学习中使用潜在空间的离散表示是一个自然的选择。 首先,编码器生成嵌入。然后从码本中为给定嵌入选择最佳近似。码本由离散向量组成。使用L2距离进行最近邻查找...
VQ-VAE是一个强大的无监督表征学习模型,它学习的离散编码具有很强的表征能力,最近比较火的文本转图像模型DALL-E也是基于VQ-VAE的。 在具体介绍VQ-VAE模型前,需要先介绍一下该模型的前身工作AutoEncoder模型以及VAE 模型。 1.1 AutoEncoder 自编码器Auto-Encoder是无监督学习的一种方式,可以用来做降维、特征提取等。
在VQ-VAE中,通过矢量量化步骤避免了后验崩溃。 矢量量化变分自编码器(VQ-VAE) 离散表示可以有效地用来提高机器学习模型的性能。人类语言本质上是离散的,使用符号表示。我们可以使用语言来解释图像。因此在机器学习中使用潜在空间的离散表示是一个自然的选择。
在VQ-VAE中,通过矢量量化步骤避免了后验崩溃。 矢量量化变分自编码器(VQ-VAE) 离散表示可以有效地用来提高机器学习模型的性能。人类语言本质上是离散的,使用符号表示。我们可以使用语言来解释图像。因此在机器学习中使用潜在空间的离散表示是一个自然的选择。
VQ-VAE 是变分自编码器(VAE)的一种改进。这些模型可以用来学习有效的表示。本文将深入研究 VQ-VAE 之前,不过,在这之前我们先讨论一些概率基础和 VAE 架构。 我们的网站: 提供专业的人工智能知识,涉及领域包括CVNLP和数据挖掘等 overfit深度学习 AI方向干货分享,喜欢请关注我们公众号...
生成模型VAE 1:28:16 生成模型GAN 1:36:48 1.【15分钟】了解变分自编码器转自:车库里的老锤~1 14:57 如何搭建VQ-VAE模型(Pytorch代码)转自:刹那-Ksana- 05:00 【中英字幕】油管百万好评的《编程思维》,让你的编程能力飞速提升,这么好的课程还没人看?我不更了!《像程序员一样思考》 9.1万播放 [playli...