求出下面图形的体积,其底面为x轴和曲线 y=4-x^2围成,它的横截面是垂直于x轴的等边三角形,其中一边在底面上。这个题看起来还有点难,是高等数学里的二重积分问题
is an important application in finding the area in the plane(the two dimensional area).This means the application of integrals to the computation of areas in the plane can be extended to the three dimensional solid.We have another important application is computation of certain volumes in space....
百度试题 结果1 题目Set up an integral for the volume of a solid torus (the donut-shaped solid shown in the figure) with radii r and R. 相关知识点: 试题来源: 解析 8πR∫_0^r√(r^2-y^2)dy 反馈 收藏
Volume of a Solid: The volume of a solid defined by rotating a region of the plane about the y-axis depends on the outer radius and inner radius of the region with respect to the y-axis. The mathematical formula that writes this volume ...
What is the volume of a certain rectangular solid?(1) Two adjacent faces of the solid have areas 15 and 24, respectively(2) Each of two opposite faces of the solid has area 40我不理解第二个条件的意思,到底是每个面都是40,还是只有两个面是40? 扫码下载作业帮搜索答疑一搜即得...
摘要: The basic idea of cylindrical shell method is expounded. A formula for calculating the volume of a solid of revolution is derived,and the application is illustrated with examples.收藏 引用 批量引用 报错 分享 全部来源 求助全文 知网 相似文献A Free-Lagrange Augmented Godunov Method for the ...
A. liquid B. plasma C. Bose - Einstein condensate D. gas 相关知识点: 试题来源: 解析 D。解析:固体有固定的形状和体积,气体(gas)没有固定的形状和体积,“solid(固体)”和“gas(气体)”是反义词关系。在这一科学语境下,液体有固定的体积,等离子体和玻色 - 爱因斯坦凝聚态不符合这里与固体相对的概念,...
Find the volume of the solid enclosed by the surface {eq}z = 1 + x^2ye^y {/eq} and the planes {eq}z = 0 {/eq}, {eq}x = 61 {/eq}, {eq}y = 0 {/eq}, and {eq}y = 1 {/eq}. Volume of solid The amount of space that a solid...
Find the volume of the solid generated by revolving the area between the curve y=cosx / x and the x-axis for π/6 扫码下载作业帮搜索答疑一搜即得 答案解析 查看更多优质解析 解答一 举报 求旋转体体积,带公式.应该是绕y轴旋转,面积是y=cosx / x与x轴所夹面积(π/6 <= x <= π/2),只...
Volume of a sphereis equal to four-thirds of its radius cubed multiplied by the number pi. Volume formula of a sphere (solid): V =4π R3 3 where V - volume of a sphere, R- radius of a sphere, π= 3.141592. See also online calculator for computing a sphere volume ...