Volatile-GPU-Util为0,但GPU可用True,在网上搜索相关解决方法,提到指定GPU,在调用程序时在前面指定GPU的使用编号,用下面的语句 CUDA_VISIBLE_DEVICES=0 python trainer.py 但会发现没有“CUDA_VISIBLE_DEVICES”这个命令,因为这是Linux系统的命令,windows不适用。 可在cmd中通过set CUDA_VISIBLE_DEVICES=0来实现 我...
上面的代码Demo说明的就是一个占GPU载荷1/80的cuda进程在nvidia-smi命令中显示出此时对GPU的利用率可以高达100% ,很显然GPU的利用率难以真实显示出GPU的载荷情况。 PS: 既然分析了GPU使用率难以完整体现出GPU的负载情况,那么有没有其他的方法来辅助呢,那就是分享一下个人的使用经验,在观察GPU使用率的同时也要注意...
我想问一下,在训练过程中,又出现Memory-Usage有占用,但是Volatile GPU-util却显示0%的情况吗
了解GPU的CUDA原理的都知道一个kernel往往并不能利用整块GPU的所有流处理器,所以使用kernel占用的时间并不能完全体现出GPU的使用率。但是这不是说明现在所使用的GPU利用率的计算方法就有很大问题呢,其实也不尽然,这种GPU利用率也是有其无奈的地方的。GPU的kernel往往是独占一整块显卡的,也就是说如果没有开mps服务、...
当训练时GPU利用率很低而内存占比很高时,可以尝试以下方法提高GPU利用率: 批量化操作:将输入数据进行批量处理,可以减少传输和计算的开销。使用PyTorch的DataLoader,并设置适当的batch_size,可以同时处理多个样本,提高GPU利用率。 异步数据加载:使用PyTorch的DataLoader中的num_workers参数,设置合适的数值,可以实现在数据加载...
1.开机时,GPU的实时使用率就很高,却没有部署任何程序。 需要把驱动模式设置为常驻内存才可以,设置命令:nvidia-smi -pm 1 。设置完后再用nvidia-smi看下。
深度学习学习——提升GPU的利用率(Volatile GPU-Util),除去网上介绍的那些方法,如测试一个合适的num_worker,或者设置pin_memory为true以外,还有一些方法,比如这里有几个工具是专门用来测试GPU的使用情况的,如pytorch下的工具包TORCH.UTILS.BOTTLENECK还有英伟达官方
I know that nvidia-smi -l 1 will give the GPU usage every one second (similarly to the following). However, I would appreciate an explanation on what Volatile GPU-Util really means. Is that the number of used SMs (Streaming Multiprocessors) over total SMs, or the occupancy, or something...
在另一情况中,GPU 使用率在 0% 至 70% 间波动,显存稳定不增加。怀疑 PID=21693 的程序为问题来源,通过命令 ps aux | grep 21693 查看程序情况,后发现该程序运行结束,GPU 使用率释放。推测可能为他人借用 GPU 执行程序所致。以上为解决 GPU 利用率问题的过程,包括确认病毒、杀掉病毒、删除病毒...