CNN是一种擅长处理图像数据的深度学习模型,通过卷积和池化操作能够提取出图像中的局部特征。在轴承故障诊断中,我们可以将VMD分解得到的IMF视为一系列“图像”,利用CNN对这些IMF进行空间特征提取,从而捕获不同频率下的振动空间特征。 3. 双向长短期记忆网络(BiLSTM) BiLSTM是一种特殊的循环神经网络(RNN),能够同时处理...
1.Matlab实现CEEMDAN-Kmeans-VMD-CNN-BiLSTM-Attentionr融合K均值聚类的数据双重分解+卷积双向长短期记忆神经网络+注意力机制多元时间序列预测(完整源码和数据) 2.CEEMDAN分解,计算样本熵,根据样本熵进行kmeans聚类,调用VMD对高频分量二次分解, VMD分解的高频分量与前分量作为卷积双向长短期记忆神经网络注意力机制模型的...
Dynamic prediction model of landslide displacement based on (SSA-VMD)-(CNN-BiLSTM-attention): a case studydoi:10.3389/fphy.2024.1417536Rubin WangYipeng LeiYue YangWeiya XuYunzi WangHuajin LiKang LiaoFrontiers in Physics