Demo 检查是否安装成功 rom vlmeval.configimportsupported_VLMmodel = supported_VLM['idefics_9b_instruct']()ret = model.generate('apple.jpg','What is in this image?')# ret: "The image features a red apple with a leaf ...
rom vlmeval.configimportsupported_VLM model=supported_VLM['idefics_9b_instruct']()ret=model.generate('apple.jpg', 'What is in this image?')# ret: "The image features a red apple with a leaf on it."ret=model.interleave_generate(['apple.jpg', 'apple.jpg', 'How many apples are there...
AI代码解释 rom vlmeval.configimportsupported_VLM model=supported_VLM['idefics_9b_instruct']()ret=model.generate('apple.jpg','What is in this image?')# ret:"The image features a red apple with a leaf on it."ret=model.interleave_generate(['apple.jpg','apple.jpg','How many apples are ...
除了传统的指标外,我们还展示了基于gpt的评估如何在评估多个方面的响应质量方面与类似人类的表现相匹配。我们提出了一个简单的基线:video - llava,它使用单个线性投影,优于现有的视频llm。最后,我们评估了学术数据集之外的视频llm,这些数据集显示出在驾驶场景中令人鼓舞的识别和推理能力,只有数百个视频指令对进行微调。
from vlmeval.config import supported_VLM # 加载模型 model = supported_VLM['idefics_9b_instruct']() # 进行单对图文推理 ret = model.generate('apple.jpg', 'What is in this image?') print(ret) # 输出: "The image features a red apple with a leaf on it." 在这个示例中,我们首先通过supp...
romvlmeval.configimportsupported_VLMmodel=supported_VLM['idefics_9b_instruct']()ret=model.generate('apple.jpg','What is in this image?')# ret: "The image features a red apple with a leaf on it."ret=model.interleave_generate(['apple.jpg','apple.jpg','How many apples are there in the...
# Demofromvlmeval.configimportsupported_VLMmodel=supported_VLM['idefics_9b_instruct']()# Forward Single Imageret=model.generate(['assets/apple.jpg','What is in this image?'])print(ret)# The image features a red apple with a leaf on it.# Forward Multiple Imagesret=model.generate(['assets...
VLMEvalKit(python 包名为vlmeval) 是一款专为大型视觉语言模型 (Large Vision-Language Models, LVLMs) 评测而设计的开源工具包。该工具支持在各种基准测试上对大型视觉语言模型进行一键评估,无需进行繁重的数据准备工作,让评估过程更加简便。在 VLMEvalKit 中,我们对所有大型视觉语言模型生成的结果进行评测,并提供基于...
针对这一问题,北京大学计算机学院联合字节跳动提出了 ConBench,弥补了这一缺陷。ConBench 评测流程简洁快速,目前合并至 LLaVA 官方推理库 lmms-eval 中,欢迎大家试用。 论文链接: https://arxiv.org/abs/2405.14156 数据集与评测代码: https://github.com/foundation-multimodal-models/ConBench ...
针对这一问题,北京大学计算机学院联合字节跳动提出了ConBench(Unveiling the Tapestry of Consistency in Large Vision-Language Models),弥补了这一缺陷。ConBench评测流程简洁快速,目前合并至LLaVA官方推理库lmms-eval中,欢迎大家试用。 论文链接:https://ar...