You can install the vLLM backend directly into the NGC Triton container. In this case, please install vLLM first. You can do so by runningpipinstallvllm==<vLLM_version>. Then, set up the vLLM backend in the container with the following commands: mkdir-p/opt/tritonserver/backends/vllmg...
wget https://raw.githubusercontent.com/triton-inference-server/vllm_backend/main/samples/client.py wget https://raw.githubusercontent.com/triton-inference-server/vllm_backend/main/samples/prompts.txt Try running this script by the following command: ...
cp -r models/vllm_opt models/vllm_load_test mkdir -p models/add_sub/1/ wget -P models/add_sub/1/ https://raw.githubusercontent.com/triton-inference-server/python_backend/main/examples/add_sub/model.py @@ -96,7 +103,7 @@ wait $SERVER_PID SERVER_ARGS="--model-repository=...
纳西妲二测GLM4-9B-Chat | vllm作为backend并接入silly tavern, 视频播放量 785、弹幕量 0、点赞数 19、投硬币枚数 8、收藏人数 22、转发人数 5, 视频作者 爱摸鱼的zzc, 作者简介 不必追光而行,你我皆是星辰。,相关视频:Ai猫娘v35【更新简介】赛博客+Ai聊天+SillyTavern
wget-P/opt/tritonserver/backends/vllm/https://raw.githubusercontent.com/triton-inference-server/vllm_backend/r<xx.yy>/src/model.py This command will download themodel.pyscript to the Triton vllm backend directory which will enable multi-lora feature. ...
Byzer- LLM 支持使用vllm 和 deepspeed 作为backend 做推理,而且和 Ray 做了无缝集成,可以实现非常好的扩展,只需要指定 GPU数以及使用SQL语法即可部署。 另外说说他们性能:vllm 在8卡 3090 跑 falcon40B 大概可以跑到 25 token/s ,在几千token 窗口下 latency 可以做到 4到15 秒之间。llama30B 在 deepspeed ...
SGLang:超越TRT的LLM推理引擎 | 最近UCB的团队升级了SGLang项目,里面提出了RadixAttention,Constrain Decoding等技术,不仅用在结构化的输入输出,文中称之为LLM Programs。仅仅SGLang的backend runtime,执行效率也超过了vLLM,直逼甚至部分超过TRT-LLM。 我觉得是在设计和实现上都值得关注的一个项目: ...
triton-inference-server/vllm_backendPublic NotificationsYou must be signed in to change notification settings Fork19 Star179
backend="vllm" disable_tqdm="--disable-tqdm" vllm_path="vllm" tokenizer_path="" # Tokenizer path to be provided tp=1 pp=1 endpoint="/v1/completions" Parse command-line arguments while [[ "$#" -gt 0 ]]; do case $1 in
name: "vllm" backend: "python" max_batch_size: 0 model_transaction_policy { decoupled: True } input [ { name: "prompt" data_type: TYPE_STRING dims: [ 1 ] }, { name: "stream" data_type: TYPE_BOOL dims: [ 1 ] optional: true }, { name: "sampling_parameters" data_type: ...