只要模型参数放的下,越小越好,如deepseekv3训练直接用tp=1,所以不再解释,这是基本认知)sglang没...
1.多 GPU 并行参数 –tp (Tensor Parallelism): 设置张量并行的 GPU 数量。例如 –tp 2 表示使用 2 个 GPU 进行张量并行。 –dp (Data Parallelism): 设置数据并行的 GPU 数量。例如 –dp 2 表示使用 2 个 GPU 进行并行。 2.内存优化参数 –mem-fraction-static: 设置 KV 缓存池的大小比例,用于优化内存...
# Create the engine configs.engine_config = engine_args.create_engine_config() # ray 集群初始化# 1. ray.init()# 2. 根据集群内gpu数量 & tp并发度设置ray placement策略initialize_ray_cluster(engine_config.parallel_config)from vllm.executor.ray_gpu_executor import RayGPUExecutorAsyncexecutor_class...
Intuitively, I believe that using Ray Serve with multiple vLLM is more similar to DP and therefore avoids communication costs in TP/PP, while Ray's proxy overhead should be minimal. I plan to run some benchmark once I have access to the necessary hardware. If there is no major improvemen...
When TP=n & PP=m, vLLM engine will have n*m + 1 processes in total. Corollary: even when using a single GPU, we will have 2 processes. The driver process will have the scheduler, memory manager, etc. The workers are stateful, maintaining most of the request states. ...
这里不是dp 1,是train_dp*train_tp >= infer_tp, 并且成倍 表态 回复 查看详情 yangguangthu 对 文件进行评论 对+408 行的评论 mindspeed_rl/workers/resharding/vllm_weight_container.py 408 new_tp_rank = self.get_new_tp_rank() yangguangthu 昨天20:02 链接地址 infer_tp_rank? 表态 回...
tms/dp reduce_scatter_comm khluu/testefs update-torch-2.6.0 amd-ci khluu/fix_async_s3 v1-fake-metadata v1-selector v1_tpu_tp khluu/testamd khluu/try_moc mla-support-awq-marlin khluu/use_s3_runai_streamer v1-sliding tpu_v1_optimized mla_cuda_graphs v0.7.3 v0.7.2 v0.7.1 v...
(ou最tp大ut值po)wer ■• Up输t出o 1电0流A 高ou达tpu1t0cAurrent ■• In输pu入t v电ol压ta范ge围ra:ng6eV6至V 3to6 3V6V ■• Ou输tp出u电t v压olt范ag围e:ra0n.g8eV0至.8V6 Vto 6V ■• Ef效fic率ie高nc达y u9p2%to 92% K主e要y特Fe性atures ■• In集teg成...
中国区热销EUCHNER 安全门开关 TP3-4131A024M bauer BG20-37/D07LA4 荆戈优势热销Hawe V30D-095 RKN-2-1-03/LN Pieper GmbH SNK-853-T 产品定义*SCHUNK APDH0350313894 kistler cable/1200A161A5 荆戈优势热销Kral AG(pump) KF- 235.CCA.003747 no. 243264 ...
# ray 集群初始化# 1. ray.init()# 2. 根据集群内gpu数量 & tp并发度设置ray placement策略initialize_ray_cluster(engine_config.parallel_config)from vllm.executor.ray_gpu_executor import RayGPUExecutorAsyncexecutor_class = RayGPUExecutorAsync