得益于 Mamba 的高效硬件感知设计,Vim 在高分辨率计算机视觉任务(如视频分割、航空图像分析、医学图像分割和计算病理学)方面比基于自我注意的 DeiT 更高效。 Method Vision Mamba 标准的 Mamba 是为一维序列设计的。为了处理视觉任务,首先将 2D 图像t∈RH×W×C转换为 2D patchxp∈RJ×(P2×C),其中P为patc...
“Vision Mamba结构 所提出的Vision Mamba如图1所示。标准的Mamba模块是为一维的文本序列所设计的。为了适配视觉信号,我们首先将二维图像转换为展平的二维图像块序列,其中是输入图像的尺寸,C是通道数,P是图像块的尺寸。接下来,我们将线性投影到大小为D的向量,并添加位置编码,如下所示:其中是中的第个图像块,...
Vision Mamba旨在通过提供更有效的替代方案来解决这个问题。 Vision Mamba vs Transformers 这篇论文主要由华中科技大学、地平线机器人、北京人工智能研究院的研究人员贡献,深入研究了Mamba 是如何处理视觉任务的。Mamba的效率来自于它的双向状态空间模型,与传统的Transformer模型相比,理论上可以更快地处理图像数据。 处理图...
论文提出了一种新的通用视觉主干模型Vision Mamba,简称Vim1,该模型使用双向状态空间模型(SSM)对图像序列进行位置嵌入,并利用双向SSM压缩视觉表示。在ImageNet[2]分类、COCO[2]目标检测和ADE20k[3]语义分割任务中,Vim相比现有的视觉Transformer[4](如DeiT[5])在性能上有显著提升,同时在计算和内存效率上也有显著改进。
Vision Mamba论文总结 : Efficient Visual Representation Learning with Bidirectional State Space Model Lianghui Zhu1∗, Bencheng Liao1∗, Qian Zhang2, Xinlong Wang3, Wenyu Liu1, Xinggang Wang1 1 Huazhong University of Science and Technology...
Vision Mamba vs Transformers 这篇论文主要由华中科技大学、地平线机器人、北京人工智能研究院的研究人员贡献,深入研究了Mamba 是如何处理视觉任务的。Mamba的效率来自于它的双向状态空间模型,与传统的Transformer模型相比,理论上可以更快地处理图像数据。 处理图像本质上比处理文本要复杂得多。因为图像不仅仅是像素的序列...
Vision Mamba vs Transformers 这篇论文主要由华中科技大学、地平线机器人、北京人工智能研究院的研究人员贡献,深入研究了Mamba 是如何处理视觉任务的。Mamba的效率来自于它的双向状态空间模型,与传统的Transformer模型相比,理论上可以更快地处理图像数据。 处理图像本质上比处理文本要复杂得多。因为图像不仅仅是像素的序列...
接下来我们看看论文内容。 Mamba 的提出带动了研究者对状态空间模型(state space model,SSM)兴趣的增加,不同于 Transformer 中自注意力机制的计算量会随着上下文长度的增加呈平方级增长,由于 SSM 擅长捕捉远程依赖关系,因而开始受到大家追捧。 在此期间,一些基于 SSM 的方法如线性状态空间层(LSSL)、结构化状态空间序...
Vision Mamba vs Transformers 这篇论文主要由华中科技大学、地平线机器人、北京人工智能研究院的研究人员贡献,深入研究了Mamba 是如何处理视觉任务的。Mamba的效率来自于它的双向状态空间模型,与传统的Transformer模型相比,理论上可以更快地处理图像数据。 处理图像本质上比处理文本要复杂得多。因为图像不仅仅是像素的序列...
本文分享香港大学计算和数据科学学院俞益洲教授及其研究团队发表于 AAAI 2025 的论文——SparX,一种强化 Vision Mamba 和 Transformer 的稀疏跳跃连接机制,性能强大,代码已开源。 论文标题: SparX: A Sparse Cross-Layer Connection Mechanism...