Vins-mono是香港科技大学开源的一个VIO算法,用紧耦合的方法,通过单目+IMU恢复出尺度,效果非常棒。VINS的功能模块可包括五个部分:数据预处理、初始化、后端非线性优化、闭环检测及闭环优化。代码中主要开启了四个线程,分别是:前端图像跟踪、后端非线性优化(其中初始化和IMU预积分在这个线程中)、闭环检测、闭环优化。1...
Vins初始化主要分成四个部分。 第一个部分是确定 IMU和相机的相对旋转矩阵(没考虑任何 bias)。第二个部分是确定初始化过程陀螺仪的 bias。第三个 过程是估计尺度因子,速度以及相对于第一… 停云 白话VINS-Mono之初始化(三) 栗子发表于白话VIN... vins-mono代码阅读之4自由度位姿图优化 vins mono的4自由度位姿...
vins-mono采用了一个松耦合传感器融合方法来获得真值,通过将只基于视觉的sfm结果与米制IMU预积分对齐,可以粗略地估计尺度,重力,速度和甚至偏置。在本文中,初始化阶段忽略加速度偏置项,加速度偏置与重力耦合,由于相对于重力的幅度来说,加速度偏置是个很小的数了,很难观察到。 A、估计旋转外参数(具体算法在InitialEX...
滑窗中各帧已经有了一个up-to-scale的位姿。也有了以初始估计零偏求的的预积分的值。陀螺仪零偏估计,就是要估计出一个陀螺仪零偏,使得滑窗中各帧间由陀螺仪求得的δqδq与视觉求得的δqδq的误差最小。这是一个典型的最小二乘问题。 $$arg\min_{b_g}\sum_{k\in B}\Vert {q{c_0}_{b_{k+1...
VINS-Mono(Visual-Inertial System)是一种基于视觉和惯性传感器的里程计系统,它结合了单目相机和IMU(惯性测量单元)数据来实现高精度的定位与建图。以下是对VINS-Mono初始化的详细步骤: 1. 环境准备 首先,确保你的开发环境已经安装了必要的依赖项,包括: ROS(机器人操作系统) Eigen库 OpenCV库 Ceres Solver Pangolin...
processIMU中IMU处理没有所谓的初始化,这点不同于processImage。 每一帧IMU的数据进来都会做这一步处理。 传入参数的时候包含了dt这个变量,所以内部进行积分的时候使用了中值积分的方式,或者说这个函数拿到的IMU数值是积分之前的,不能够直接拿来用。 1|0作用 ...
本文深入解析了VINS-MONO的初始化过程,主要聚焦视觉与IMU之间的关联对齐。首先,当相机坐标系与世界坐标系相关联时,通过外参数方程[公式]来构建关系。视觉和IMU对齐的关键在于估计相邻帧之间的旋转,可通过视觉测量[公式]和IMU旋转积分[公式]来得到两条路径,构建等式求解外参数。具体来说,利用旋转的两...
目录 滑动窗口内的纯视觉SfM 视觉惯性对齐 小结 单目紧耦合的VIO是一个非线性系统,需要有一个精确的初始值。VINS-Mono的初始化采用松耦合的方式将纯视觉SfM和IMU预积分对齐,获得状态估计器的初始值。该部分对应源代码的bool Estimator::initialStructure()函数。 滑动窗口内的纯视觉SfM 为了维持有限的计算复杂度,VINS...
6.初始化第一个问题,为什么要初始化?对于单目系统而言, (1)视觉系统只能获得二维信息,损失了一维信息(深度),所以需要动一下,也就是三角化才能重新获得损失的深度信息; (2)但是,这个三角化恢复的深度信息,是个“伪深度”,它的尺度是随机的,不是真实的,所以就需要IMU来标定这个尺度; (3)要想让IMU标定这个尺度...
初始化开始于基于视觉的SfM,以此来估计相机位姿及特征点位置,为了限制计算量,这里仅使用一定数量的帧进行,即所谓的Sliding Window。首先,检查最新帧和以前的帧(程序中先从第一帧开始找,因为与最新帧里的更远,视差更大)之间的特征对应关系,如果有足够多的特征匹配及充足的视差,使用5(对)点法(程序中使用的是cv::...