比如你Video Linear CFG Guidance模块上的min-CFG值为1,K采样器上的CFG值为3,总共生成14帧的图像,...
首先是Video Linear CFG Guidance模块,这个模块翻译过来是视频线性CFG指导,那么这个模块有什么用呢? 这个模块通过跨帧缩放 CFG 来改进视频采样,简单的来说,距离初始图像帧较远的帧会接收逐渐较高的 CFG 值。 比如你Video Linear CFG Guidance模块上的min-CFG值为1,K采样器上的CFG值为3,总共生成14帧的图像,那么...
$ youtube-dl --get-filename -o '%(title)s.%(ext)s' BaW_jenozKc youtube-dl test video ''_ä↭𝕐.mp4 # All kinds of weird characters $ youtube-dl --get-filename -o '%(title)s.%(ext)s' BaW_jenozKc --restrict-filenames youtube-dl_test_video_.mp4 # A simple file ...
pipe.set_adapters(["cogvideox-lora"], [32 / 64]) # 使用管道生成视频,传入验证提示,设置指导比例,并启用动态配置 video = pipe("{validation_prompt}", guidance_scale=6, use_dynamic_cfg=True).frames[0] # 更多细节,包括权重、合并和融合 LoRA,请查看 [diffusers 中加载 LoRA 的文档](https://...
Provide feedback We read every piece of feedback, and take your input very seriously. Include my email address so I can be contacted Cancel Submit feedback Saved searches Use saved searches to filter your results more quickly Cancel Create saved search Sign in Sign up {...
During inference, we use standard classifier-free guidance with cfp as the conditioning signal 2.8 Google VideoPoet:基于MAGVIT V2和Transformer而来 2023年年底,Google推出了VideoPoet(这是其论文:VideoPoet: A Large Language Model for Zero-Shot Video Generation),包含两个阶段:预训练和微调(pretraining and...
{ "min_cfg": 1, "model": [ "18", 0 ] }, "class_type": "VideoLinearCFGGuidance", "_meta": { "title": "Linear CFG Bootstrap" } }, "18": { "inputs": { "ckpt_name": "svd_xt_image_decoder.safetensors" }, "class_type": "ImageOnlyCheckpointLoader", "_meta": ...
# 处理 ADA LN 调制层的重命名"mixins.final_layer.adaLN_modulation.1":"norm_out.linear",# 处理特定于 CogVideoX-5b-I2V 的重命名"mixins.pos_embed.pos_embedding":"patch_embed.pos_embedding",# Specific to CogVideoX-5b-I2V}# 定义一个字典,用于特殊键的重映射TRANSFORMER_SPECIAL_KEYS_REMAP...
noise_pred = rescale_noise_cfg( noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale, ) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step( noise_pred, t, latents, **extra_step_kwargs, return_dict=False ...
无分类器引导(Classifier-Free Guidance, CFG)显著提升了文本条件扩散模型的样本质量和运动稳定性。然而,CFG 在推理时需要为每一步额外计算无条件输入的输出,从而增加了计算开销和推理延迟。尤其是在大规模视频模型或高分辨率视频生成任务中,同时生成文本条件和无条件视频会带来极高的推理成本。