如上图所示,vggnet不单单的使用卷积层,而是组合成了“卷积组”,即一个卷积组包括2-4个3x3卷积层(a stack of 3x3 conv),有的层也有1x1卷积层,因此网络更深,网络使用2x2的max pooling,在full-image测试时候把最后的全连接层(fully-connected)改为全卷积层(fully-convolutional net),重用训练时的参数,...
all our ConvNet layer configurations are designed using the same principles, inspired by Ciresan et al. (2011); Krizhevsky et al. (2012). In this section, we firstdescribe a generic layout of our ConvNet configurations (Sect. 2.1) and then detail the specific configurations used in...
VGGNet的产生主要源于2012年AlexNet将深度学习的方法应用到ImageNet的图像分类比赛中并取得了惊人的效果后,大家都竞相效仿并在此基础上做了大量尝试和改进,例如,在卷积层使用更小的卷积核以及更小的步长(Zeiler&Fergus,2013; Sermanet,2014),又或者在整个图像和多个尺度上密集地训练和测试网(Sermanet,2014:Howard,2014...
论文中全部使用了3x3的卷积核 和 2x2的池化核,卷积步长为1 都采用Relu作为激活函数 卷积核采用3x3 ? VGGNet 拥有5段卷积,每一段内有2~3个卷积层,同时每段尾部会连接一个最大池化层用来缩小图片尺寸。每段内的卷积核数量一样,越靠后的段的卷积核数量越多:64 – 128 – 256 – 512 – 512。其中经常出现...
上一篇我们介绍了经典神经网络的开山力作——AlexNet:经典神经网络论文超详细解读(一)——AlexNet学习笔记(翻译+精读) 在文章最后提及了深度对网络结果很重要。今天我们要读的这篇VGGNet(《Very Deep Convolutional Networks For Large-Scale Image Recognition》),就是在AlexNet基础上对深度对网络性能的影响做了进一步的...
0. 论文链接 论文链接 1. 概述 VGG提出了相对AlexNet更深的网络模型,并且通过实验发现网络越深性能越好(在一定范围内)。在网络中,使用了更小的卷积核(3x3),stride为1,同时不单单的使用卷积层,而是组合成了“卷积组”,即一个卷积组包括2-4个3x3卷积层(a stack of 3x3 conv),有的层也有1x1卷积层,...
VGGNet是2014年ILSVRC竞赛的第二名,没错你没听错它是第二名,第一名是GoogLeNet(真不是我打错google,是谷歌为了纪念LeNet,所以用的大写L).为什么先讲VGG,因为它这个模型在多个迁移学习任务中的表现要优于googLeNet。而且,从图像中提取CNN特征,VGG模型是首选算法。它的缺点在于,参数量有140M之多,需要更大的存储空...
在第 2 节,我们描述了我们的 ConvNet 配置。图 像分类训练和评估的细节在第 3 节,并在第 4 节中在 ILSVRC 分类任务上对配 置进行了比较。第 5 节总结了论文。为了完整起见,我们还将在附录 A 中描述 和评估我们的 ILSVRC-2014 目标定位系统,并在附录 B 中讨论了非常深的特征 在其它数据集上的泛化。
论文为VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION,主要讨论了在大规模图片识别中,卷积神经网络的深度对准确率的影响。本篇论文提出的vgg网络在2014年的ImageNet比赛中分别在定位和分类中获得了第一和第二的成绩。 改进创新点 VGGNet对2012年的AlexNet模型主要提出了两种改进思路: ...
如上图所示,vggnet不单单的使用卷积层,而是组合成了“卷积组”,即一个卷积组包括2-4个3x3卷积层(a stack of 3x3 conv),有的层也有1x1卷积层,因此网络更深,网络使用2x2的max pooling,在full-image测试时候把最后的全连接层(fully-connected)改为全卷积层(fully-convolutional net),重用训练时的参数,使得测试...