VGG16包含了16个隐藏层(13个卷积层和3个全连接层),如上图中的D列所示 VGG19包含了19个隐藏层(16个卷积层和3个全连接层),如上图中的E列所示 VGG网络的结构非常一致,从头到尾全部使用的是3x3的卷积和2x2的max pooling。 如果你想看到更加形象化的VGG网络,可以使用经典卷积神经网络(CNN)结构可视化工具来查看...
分别是VGG-11,VGG-13,VGG-16,VGG-19,网络的输入是224*224大小的图像,输出是图像分类结果(本文只针对网络在图像分类任务上,图像定位任务上暂不做分析) 接下来开始对VGG做详细的分析,首先VGG是基于Alexnet网络的,VGG在Alexnet基础上对深度神经网络在深度和宽度上做了更多深入的研究,业界普遍认为,更深的网络具有比浅...