下表中,C即为VGG16的网络结构,其中,VGG16中的16是指该网络具有16个包含权重的网络层(卷积层和全连接层)。更具体地,VGG16由13个卷积层和3个全连接层构成,此外,VGG16还包含了5个2×2的最大池化层。 VGG网络配置 在原始的VGG16模型中,并未包含批归一化层(Batch Normalization,BN),这给VGG16的训练带来了难...
下面以VGG16为例,来详细剖析一下VGG的网络结构。VGG16的结构如下图所示: VGG16总共包含16个子层,第1层卷积层由2个conv3-64组成,第2层卷积层由2个conv3-128组成,第3层卷积层由3个conv3-256组成,第4层卷积层由3个conv3-512组成,第5层卷积层由3个conv3-512组成,然后是2个FC4096,1个FC1000。总共16层...
其中,D表示著名的VGG16,E表示著名的VGG19。下面以VGG16为例,来详细剖析一下VGG的网络结构。VGG16的结构如下图所示: VGG16总共包含16个子层,第1层卷积层由2个conv3-64组成,第2层卷积层由2个conv3-128组成,第3层卷积层由3个conv3-256组成,第4层卷积层由3个conv3-512组成,第5层卷积层由3个conv3-512组...
VGG16是由Visual Geometry Group(VGG)团队提出的一个经典卷积神经网络模型。它的网络结构非常简洁,由13个卷积层和3个全连接层组成。以下是VGG16的网络结构示意图: gantt title VGG16网络结构 section 卷积层 Conv1 :a1, 1, 2 Conv2 :a2, 3, 4 Conv3 :a3, 5, 6 Conv4 :a4, 7, 8 Conv5 :a5, 9,...
深度学习应用篇-计算机视觉-图像分类[2]:LeNet、AlexNet、VGG、GoogleNet、DarkNet模型结构、实现、模型特点详细介绍 1.LeNet(1998) LeNet是最早的卷积神经网络之一[1],其被提出用于识别手写数字和机器印刷字符。1998年,Yann LeCun第一次将LeNet卷积神经网络应用到图像分类上,在手写数字识别任务中取得了巨大成功。算...
AlexNet与此前的LeNet相比,具有更深的网络结构,包含5层卷积和3层全连接,具体结构如图1所示。 1)第一模块:对于$224\times 224$的彩色图像,先用96个$11\times 11\times 3$的卷积核对其进行卷积,提取图像中包含的特征模式(步长为4,填充为2,得到96个$54\times 54$的卷积结果(特征图);然后以$2\times 2$大...
其中,D表示著名的VGG16,E表示著名的VGG19。下面以VGG16为例,来详细剖析一下VGG的网络结构。VGG16的结构如下图所示: VGG16总共包含16个子层,第1层卷积层由2个conv3-64组成,第2层卷积层由2个conv3-128组成,第3层卷积层由3个conv3-256组成,第4层卷积层由3个conv3-512组成,第5层卷积层由3个conv3-512组...
其中,D表示著名的VGG16,E表示著名的VGG19。下面以VGG16为例,来详细剖析一下VGG的网络结构。VGG16的结构如下图所示: VGG16总共包含16个子层,第1层卷积层由2个conv3-64组成,第2层卷积层由2个conv3-128组成,第3层卷积层由3个conv3-256组成,第4层卷积层由3个conv3-512组成,第5层卷积层由3个conv3-512组...
AlexNet与此前的LeNet相比,具有更深的网络结构,包含5层卷积和3层全连接,具体结构如图1所示。 1)第一模块:对于224×224的彩色图像,先用96个11×11×3的卷积核对其进行卷积,提取图像中包含的特征模式(步长为4,填充为2,得到96个54×54的卷积结果(特征图);然后以2×2大小进行池化,得到了96个27×27大小的特征...
下图是VGG-16的网络结构示意图,一共包含13层卷积和3层全连接层。VGG网络使用3×3的卷积层和池化层组成的基础模块来提取特征,三层全连接层放在网络的最后组成分类器,最后一层全连接层的输出即为分类的预测。 在VGG中每层卷积将使用ReLU作为激活函数,在全连接层之后添加dropout来抑制过拟合。使用小的卷积核能够有效...