变分自编码器(Variational Auto-Encoders,VAE)是深度生成模型的一种形式(GAN也是其中一种),VAE是基于变分贝叶斯推断的生成式网络结构。传统自编码器是通过数值方式描述潜在空间的不同,而VAE以概率的方式描述潜在空间的不同,是一种无监督式学习的生成模型。 举个简单的例子说明变分自编码模型,输入一张照片,想描述其中...
本文主要是在Understanding Variational Autoencoders (VAEs) | by Joseph Rocca | Towards Data Science基础之上结合本人的一点浅显理解而成,感谢Joseph Rocca大神的无私分享。 VAE的核心思想是把隐向量看作是一个概率分布。具体而言,编码器(encoder)不直接输出一个隐向量,而是输出一个均值向量和一个方差向量,它们刻画...
# 定义变分自动编码器classVariationalAutoencoder(tf.keras.Model):def__init__(self,latent_dim,original_dim):super(VariationalAutoencoder,self).__init__()self.encoder=Encoder(latent_dim)self.decoder=Decoder(original_dim)defcall(self,x):z_mean,z_log_var=self.encoder(x)epsilon=tf.random.normal(...
【摘要】 引言随着深度学习的发展,自动编码器(Autoencoders)成为了一种重要的无监督学习算法。其中,变分自动编码器(Variational Autoencoders,VAEs)作为一种特殊类型的自动编码器,在生成模型、数据压缩和特征学习等领域取得了很大的成功。本文将介绍变分自动编码器的原理和应用,并探讨其在深度学习中的重要性。变分自动...
在当今的人工智能领域,变分自编码器(Variational Autoencoders, VAE)已经成为一个非常受欢迎的研究主题,特别是在生成模型的开发中。从简单的图像生成到复杂的数据去噪和特征提取,VAE的应用范围日益扩大,显示出其在深度学习和人工智能研究中的广泛潜力。在我们的系列文章中,我们已经探讨了VAE的基础知识、核心数学原理,并...
对于AutoEncoders,encoder的作用是将一个输入数据映射到latent space是一个single point,在latent space里,这个point只代表 .而VAR认为latent space里,它应该代表了一个分布,即以输入数据为代表的一类东西。举例而言,如果输入是一只站立的黄色的狗,AE只会认为它是一只站立的黄色的狗,VAE会认为它可以是一只黄色...
AE encoder-decoder架构,通过encoder将输入x编码成特征z,将z输入decoder进行解码得到x‘,因此,VE只能只能针对特定的…阅读全文 赞同2 添加评论 分享收藏 VAE 先导知识 查林 看了VAE的论文发现里边有很多概念需要进行了解掌握,比如mean-field, variational Bayesian 等先导概念需要掌握,遂进行相关...
Variational Auto-Encoders又称为变分自编码器,要想学习它,首先需要弄清楚Autoencoder自编码器到底是个什么东西。我从MIT 6.S191中的Deep Generative Models课程中大受启发,感兴趣的朋友可以去看看,这里就附上课程链接:http://introtodeeplearning.com/,另外有篇关于VAEs的文章写得也很不错,本文由参考,附上连接可...
自编码(Auto-Encoders)是非监督学习领域中的一种, 可以自动从无标注的数据中学习特征, 是一种以重构输入信号为目标的神经网络, 它可以给出比原始数据更好的特征描述, 具有较强的特征学习能力, 在深度学习中常用自编码网络生成的特征来取代原始数据, 以得到更好的结果。长被用于生成类模型。
1. 传统的Auto-Encoders 传统的自动编码机是一个神经网络,它包含一个编码层和一个解码层。编码层将一个点X作为输入,将他转换成一个低维的特征 embedding Z。 解码是将低维的特征表示Z返回成一个重新构建的原始输入 X-hat,尽量使X-hat跟X相似。 下面是手写数字识别的例子