value_counts(normalize = True) S 0.72% C 0.19% Q 0.09% Name: Embarked, dtype: float64 6、将连续数据分入离散区间 Pandas value_counts() 可用于使用 bin 参数将连续数据分入离散区间。与 Pandas cut() 函数类似,我们可以将整数或列表传递给 bin 参数。 当整数传递给 bin 时,该函数会将连续值离散化...
df['Embarked'].value_counts(dropna=False) S 644 C 168 Q 77 NaN 2 Name: Embarked, dtype: int64 5、以百分比计数显示结果 在进行探索性数据分析时,有时查看唯一值的百分比计数会更有用。这可以通过将参数 normalize 设置为 True 来完成,...
如何用 value_counts() 求各个值的相对频率 有时候,百分比比单纯计数更能体现数量的相对关系。当 normalize = True 时,返回的对象将包含各个值的相对频率。默认情况下,normalize 参数被设为 False。 代码语言:javascript 代码运行次数:0 运行 AI代码解释 train['Embarked'].value_counts(normalize=True)---S0.72440...
`normalize`参数是一个布尔值,用于控制是否返回相对频率而不是绝对计数。 如果`normalize`设置为`True`,`value_counts`将返回相对频率,即每个唯一值在Series中出现的比例。如果`normalize`设置为`False`(默认值),则返回绝对计数,即每个唯一值在Series中出现的次数。 以下是一个简单的示例: ```python import pandas...
一、value_counts()函数value_counts()函数用于计算DataFrame或Series中各个唯一元素的数量。它会按照元素出现次数降序排列,并返回一个Series对象。基本语法如下: pandas.Series.value_counts(sort=False, ascending=False, normalize=False, bins=None, dropna=True) 参数说明: sort: 是否排序,默认为False,即按照出现...
df['A'].value_counts(sort=False, ascending=True, normalize=True, bins=2, range=[0, 5]) 三、应用实例下面是一个更复杂的应用实例,演示了如何在实际数据分析中使用value_counts()函数:假设我们有一个包含用户购买记录的DataFrame,其中包含用户ID、购买商品和购买时间等列。我们想要了解每种商品的销售情况,...
df['Embarked'].value_counts(dropna=False) S 644 C 168 Q 77 NaN 2 Name: Embarked, dtype: int64 5、以百分比计数显示结果 在进行探索性数据分析时,有时查看唯一值的百分比计数会更有用。 这可以通过将参数 normalize 设置为 True 来完成,例如: df['Embarked'].value_counts(normalize=True) S 0.724409...
如何用 value_counts() 求各个值的相对频率 有时候,百分比比单纯计数更能体现数量的相对关系。当 normalize = True 时,返回的对象将包含各个值的相对频率。默认情况下,normalize 参数被设为 False。 train[Embarked].value_counts(normalize=True) --- S0.724409...
Pandas: count() 与 value_counts() 对比 1. Series.value_counts(self, normalize=False, sort=True, ascending=False, bins=None, dropna=True) 返回一个包含所有值及其数量的 Series。 且为降序输出,即数量最多的第一行输出。 参数含义如下: Parameters: normalize......
Pandas Series.value_counts()实例介绍 value_counts()函数返回一个Series, 其中包含唯一值的计数。它返回一个降序排列的对象, 这样它的第一个元素将成为最常出现的元素。 默认情况下, 它不包含NA值。 句法 Series.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)...