vae loss公式 在变分自编码器(VAE)中,重构损失(reconstruction loss)和KL散度损失(KL divergence loss)是两个主要的损失函数。 重构损失通常表示为L_{recon},其计算公式为x - x'_2^2,其中x是原始输入,x'是编码器输出的重建输入。 KL散度损失表示为L_{KL},其计算公式为D_{KL}(N(μx, σx) N(0, 1...
VAE本质上就是在我们常规的自编码器的基础上,对 encoder 的结果(在VAE中对应着计算均值的网络)加上了“高斯噪声”,使得结果 decoder 能够对噪声有鲁棒性;而那个额外的 KL loss(目的是让均值为 0,方差为 1),事实上就是相当于对 encoder 的一个正则项,希望 encoder 出来的东西均有零均值。 而编码计算方差的...
loss=MSE(X,X′)+KL(N(μ1,σ12),N(0,1)) reconstruct loss计算的是解码器解码得到的向量和输入向量之间的MSE loss,这一项比较好理解,就是反映出vae生成的结果和输入之间的差异,对应的目标是使vae生成的结果和输入尽可能相似,具体的原理基本类似于最小二乘拟合的原理来衡量误差。 kl散度正则项相较于MES l...
vae = Model(x, x_decoded_mean) # xent_loss是重构loss,kl_loss是KL loss xent_loss = K.sum(K.binary_crossentropy(x, x_decoded_mean), axis=-1) kl_loss = - 0.5 * K.sum(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) vae_loss = K.mean(xent_loss + ...
5. 添加小的常数到KL散度计算中 在计算KL散度时,添加一个很小的常数(比如1e-6)到对数计算中,...
VAE的损失函数包括两个部分:重构损失和KL散度损失。 重构损失(Reconstruction Loss):用于衡量重构样本与原始样本之间的差异。在Keras中,通常使用均方误差(Mean Squared Error)或二进制交叉熵(Binary Cross Entropy)作为重构损失函数。 KL散度损失(KL Divergence Loss):用于测量潜在空间(latent space)与标准正态分布之间的...
简单来说,这里的 Reconstruction loss 是用来让 decoder 的输出 Y 和输入 X 尽可能相似。而 KL loss 希望隐变量空间可以符合标准的正态分布,但实际 X 的分布其实并不是标准的正态分布,也就是说 KL loss 会让输出 Y 具有多样性,与输入 X 产生一部分的差异。
接下来是VAE的损失函数:由两部分的和组成(bce_loss、kld_loss)。bce_loss即为binary_cross_entropy(二分类交叉熵)损失,即用于衡量原图与生成图片的像素误差。kld_loss即为KL-divergence(KL散度),用来衡量潜在变量的分布和单位高斯分布的差异。 3. Pytorch实现 ...
它本质上就是在我们常规的自编码器的基础上,对 encoder 的结果(在VAE中对应着计算均值的网络)加上了“高斯噪声”,使得结果 decoder 能够对噪声有鲁棒性;而那个额外的 KL loss(目的是让均值为 0,方差为 1),事实上就是相当于对 encoder 的一个正则项,希望 encoder 出来的东西均有零均值。
最终,ELBO loss 由上述两个损失函数组成,系数为 α和β: 简单来说,这里的 Reconstruction loss 是用来让 decoder 的输出 Y 和输入 X 尽可能相似。而 KL loss 希望隐变量空间可以符合标准的正态分布,但实际 X 的分布其实并不是标准的正态分布,也就是说 KL loss 会让输出 Y 具有多样性,与输入 X 产生一部...