说好V100、A100、A800、H100、H800 这些 GPU 来做对比的,怎么没见 A800 和 H800 呢?从型号上看,莫非它们的性能是 A100、H800 的好几倍? 事实不然。虽然从数字上来看,800 比 100 数字要大,其实是为了合规对 A100 和 H100 的某些参数做了调整。A800 相对比 A100 而言,仅限制了 GPU 之间的互联带宽,从 A...
测试者将一块V100的32位的训练速度归一化,对比了不同数量GPU的训练速度。 将结果在SSD、ResNet-50和Mask RCNN上取平均值。(原始数据可通过文末链接查看) 得到结果: 例如: 1块A100 VS 1块V100,进行32位训练:前者速度是后者的2.17倍; 4块V100 VS 1块V100,进行32位训练:前者速度是后者的3.88倍; 8块A100的...
说好V100、A100、A800、H100、H800 这些 GPU 来做对比的,怎么没见 A800 和 H800 呢?从型号上看,莫非它们的性能是 A100、H800 的好几倍? 事实不然。虽然从数字上来看,800 比 100 数字要大,其实是为了合规对 A100 和 H100 的某些参数做了调整。A800 相对比 A100 而言,仅限制了 GPU 之间的互联带宽,从 A...
从型号上看,莫非它们的性能是 A100、H800 的好几倍? 事实不然。虽然从数字上来看,800 比 100 数字要大,其实是为了合规对 A100 和 H100 的某些参数做了调整。A800 相对比 A100 而言,仅限制了 GPU 之间的互联带宽,从 A100 的 600GB/s 降至 400GB/s,算力参数无变化。而 H800 则对算力和互联带宽都进行...
A100 vs H100 NVIDIA H100 采用 NVIDIA Hopper GPU 架构,使 NVIDIA 数据中心平台的加速计算性能再次实现了重大飞跃。H100 采用专为 NVIDIA 定制的 TSMC 4N 工艺制造,拥有 800 亿个 晶体管,并包含多项架构改进。 H100 是 NVIDIA 的第 9 代数据中心 GPU,旨在为大规模 AI 和 HPC 实现相比于上一代 NVIDIA A100...
A100 vs H100 NVIDIA H100 采用 NVIDIA Hopper GPU 架构,使 NVIDIA 数据中心平台的加速计算性能再次实现了重大飞跃。H100 采用专为 NVIDIA 定制的 TSMC 4N 工艺制造,拥有 800 亿个 晶体管,并包含多项架构改进。 H100 是 NVIDIA 的第 9 代数据中心 GPU,旨在为大规模 AI 和 HPC 实现相比于上一代 NVIDIA A100...
看来,针对不同模式下的深度学习训练,英伟达A100都有着相当不错的效率。 “前所未有的规模”以及“惊人的性能”,所言不虚。 原文链接: https://lambdalabs.com/blog/NVIDIA-a100-vs-v100-benchmarks/ 测试原始数据: https://lambdalabs.com/gpu-benchmarks ...
A100 vs H100 NVIDIA H100 采用 NVIDIA Hopper GPU 架构,使 NVIDIA 数据中心平台的加速计算性能再次实现了重大飞跃。H100 采用专为 NVIDIA 定制的 TSMC 4N 工艺制造,拥有 800 亿个 晶体管,并包含多项架构改进。 H100 是 NVIDIA 的第 9 代数据中心 GPU,旨在为大规模 AI 和 HPC 实现相比于上一代 NVIDIA A100...
1.2 A100 vs H100G细解 1.2.1 新的 SM 架构 H100 SM 基于 NVIDIA A100 Tensor Core GPU SM 架构而构建。由于引入了 FP8,与 A100 相比,H100 SM 将每 SM 浮点计算能力峰值提升了 4 倍,并且对于之前所有的 Tensor Core 和 FP32 / FP64 数据类型,将各个时钟频率下的原始 SM 计算能力增加了一倍。
A100:非常适合需要进行大规模AI训练和复杂数据分析的企业。它的高速内存和强大处理能力也使其成为推荐系统、自然语言处理和图像识别等任务的理想选择。 V100:适合那些已经依赖于NVIDIA GPU生态系统的企业,并且需要处理大规模计算但预算相对有限的任务。V100仍然是执行科学计算和早期AI模型开发的强大工具。