与A100 相比,H100 中新的第四代 Tensor Core 架构可使每时钟每个 SM 的原始密集计算和[稀疏矩阵]运算吞吐量提升一倍,考虑到 H100 比 A100 拥有更高的 GPU 加速频率,其甚至会达到更高的吞吐量。其支持 FP8、FP16、BF16、TF32、FP64 和 INT8 MMA 数据类型。新的 Tensor Core 还能够实现更高效的数据管理,...
config=baichuan_config,torch_dtype=torch.bfloat16ifargs.compute_dtype=="bf16"elsetorch.float16,low_cpu_mem_usage=True,trust_remote_code=True,**config_kwarg
v100不支持 bf16运行,只能支持普通的fp16精度,即类似torch.float16 编辑于 2024-01-08 20:47・IP 属地广东 显卡 V100 赞同346 条评论 分享喜欢收藏申请转载 写下你的评论... 6 条评论 默认 最新 Xie Yipeng 不用qwen是不是就解决了 03-28· 上海 回复喜欢...
此回答整理自“魔搭ModelScope开发者联盟群 ①”。
△ H100 FP16 的吞吐量是 A100 FP16 的 3 倍 与A100 相比,H100 中新的第四代 Tensor Core 架构可使每时钟每个 SM 的原始密集计算和稀疏矩阵运算吞吐量提升一倍,考虑到 H100 比 A100 拥有更高的 GPU 加速频率,其甚至会达到更高的吞吐量。其支持 FP8、FP16、BF16、TF32、FP64 和 INT8 MMA 数据类型。
FP8 Tensor Core 支持 FP32 和 FP16 累加器,以及两种新的 FP8 输入类型:E4M3(具有 4 个[指数位]、3 个尾数位和 1 个符号位)和 E5M2(具有 5 个指数位、2 个尾数位和 1 个符号位)。E4M3 支持动态范围更小、精度更高的计算,而 E5M2 可提供更宽广的动态范围和更低的精度。与 FP16 或 BF16 ...
其支持 FP8、FP16、BF16、TF32、FP64 和 INT8 MMA 数据类型。新的 Tensor Core 还能够实现更高效的数据管理,最高可节省 30% 的操作数传输功耗。 1.2.3 Hopper FP8 数据格式 H100 GPU 增加了 FP8 Tensor Core,可加速 AI 训练和推理。FP8 Tensor Core 支持 FP32 和 FP16 累加器,以及两种新的 FP8 输入...
△ H100 FP16 的吞吐量是 A100 FP16 的 3 倍 与A100 相比,H100 中新的第四代 Tensor Core 架构可使每时钟每个 SM 的原始密集计算和稀疏矩阵运算吞吐量提升一倍,考虑到 H100 比 A100 拥有更高的 GPU 加速频率,其甚至会达到更高的吞吐量。其支持 FP8、FP16、BF16、TF32、FP64 和 INT8 MMA 数据类型。
△ H100 FP16 的吞吐量是 A100 FP16 的 3 倍 与A100 相比,H100 中新的第四代 Tensor Core 架构可使每时钟每个 SM 的原始密集计算和稀疏矩阵运算吞吐量提升一倍,考虑到 H100 比 A100 拥有更高的 GPU 加速频率,其甚至会达到更高的吞吐量。其支持 FP8、FP16、BF16、TF32、FP64 和 INT8 MMA 数据类型。
FP8 Tensor Core 支持 FP32 和 FP16 累加器,以及两种新的 FP8 输入类型:E4M3(具有 4 个[指数位]、3 个尾数位和 1 个符号位)和 E5M2(具有 5 个指数位、2 个尾数位和 1 个符号位)。E4M3 支持动态范围更小、精度更高的计算,而 E5M2 可提供更宽广的动态范围和更低的精度。与 FP16 或 BF16 ...