read_conf = Utils().read_file(self.config_file)forlineinread_conf.splitlines():ifnotline.startswith("#")andline.split("=")[0]inconf_args: print("{0}".format(line))else: print("{0}{1}{2}".format(self.meta.color["CYAN"], line, self.meta.color["ENDC"])) print("")# new ...
使用jopt-simple工具库验证命令行参数提供的host/port格式是否正确,validatePortOrDie方法对接收到的host:port字符串进行split,过滤掉那些不符合host:port格式的项得到一个Array[String],如果这个数组的个数与split出来的Array长度不匹配,说明有不合格项,直接打印调用方法并结束程序。 okay! 我们快接近胜利了!不过一想到...
self.plot2d.line(self.data.points,"black")# self.data.traces.append(self.data.points)self.last_read_time = time.time()defupdate(self):ifself.running ==False:returnself.collect_hist(0)defstart(self, w):self.ph.start_hist() self.running =Trueself.msgwin.msg("Started CollectingData")def...
支持了一个特性叫做 Follower Read,看到这个功能被合并进主干我确实有点百感交集,还发了条朋友圈庆祝...
图像分类数据集时,遇到几个重要的数据下载和加载函数,主要是torchvision.datasets.FashionMNIST()、data.DataLoader。刚开始使用此方法下载数据集时,完全是蒙的,不知道具体是怎么操作的,在网上找了好多参考资料,都没有一个能很好的解释下载数据和读取数据的过程。最后在一篇加载“CIFAR10数据集的博客pycharm加载本地数据...
read() if data: yield data yield buf.read() # Expression to match some_token and some_token="with spaces" (and similarly # for single-quoted strings). smart_split_re = re.compile(r""" ((?: [^\s'"]* (?: (?:"(?:[^"\\]|\\.)*" | '(?:[^'\\]|\\.)*') [^\s'"...
tsv-split- Split data into multiple files. Random splits, random splits by key, and splits by blocks of lines. tsv-append- Concatenate TSV files. Header-aware; supports source file tracking. number-lines- Number the input lines. keep-header- Run a shell command in a header-aware fashion...
Provide feedback We read every piece of feedback, and take your input very seriously. Include my email address so I can be contacted Cancel Submit feedback Saved searches Use saved searches to filter your results more quickly Cancel Create saved search Sign in Sign up {...
New tool: tsv-split (#270) 4年前 README BSL-1.0 Command line utilities for tabular data files Tools overview tsv-filter tsv-select tsv-uniq tsv-summarize tsv-sample tsv-join tsv-pretty csv2tsv tsv-split tsv-append number-lines keep-header ...
sampling_rate, data = read(full_path) return torch.FloatTensor(data.astype(np.float32)), sampling_rate def load_filepaths_and_text(filename, split="|"): with open(filename, encoding='utf-8') as f: filepaths_and_text = [line.strip().split(split) for line in f] return fil...