os.environ["GRADIENT_ACCUMULATION"] = str(gradient_accumulation) os.environ["USE_FP16"] = str(use_fp16) os.environ["USE_PEFT"] = str(use_peft) os.environ["USE_INT4"] = str(use_int4) os.environ["LORA_R"] = str(lora_r) os.environ["LORA_ALPHA"] = str(lora_alpha) os.enviro...
确保CUDA可用或设置use_cuda=FalseEN数据较多或者模型较大时,为提高机器学习模型训练效率,一般采用多GPU...
What is the charms bar in Windows 8? The charms bar is a hidden menu that can be accessed by swiping from the right side of the screen or moving the mouse cursor to the top or bottom right corner. It provides quick access to system functions such as search, share, devices, settings,...
Linear8bitLt(64, 10, has_fp16_weights=False) ) def forward(self, x): x = self.flatten(x) x = self.model(x) return F.log_softmax(x, dim=1) device = torch.device("cuda") # Load model = Net8Bit() model.load_state_dict(torch.load("mnist_model.pt")) ...
Option 1. Use FP16 pixel format and scRGB color spaceWindows 10 supports two main combinations of pixel format and color space for Advanced Color. Select one based on your app's specific requirements.We recommend that general-purpose apps use Option 1. It's the only option that works for ...
(0%2c%200%2c%200)%3b%20text-decoration%3a%20underline%3b%22%3e%3cspan%20style%3d%22color%3a%20rgb(0%2c%200%2c%200)%3b%22%3e%3cstrong%3etrade%20in%20now%3c%2fstrong%3e%3c%2fspan%3e%3c%2fa%3e%3c%2fp%3e","zh":""},"id":"page8aceb237-343c-422b-b376-500972469b18"},"...
FP16 Integration Subgraph Integration Conditional Checkout and Compilation of Dependencies Make use of Cached TRT Engines Increased Operator (/Layer) Coverage Benchmarks Related articles Why is TensorRT integration useful? TensorRT can greatly speed up inference of deep learning models. One experiment on...
add_argument('--use_a3c', default=False, type=int) #108parser.add_argument('--process_N', default=1, type=int) #109parser.add_argument('--cuda_id', default=1, type=int) #110opt = parser.parse_args()111all_task_list = [8,9,10,11,12]112all_task_list.extend([16,17,18,19...
float16 if len(self.lpips) == 0: lpips_eval = lpips.LPIPS( net='vgg', eval_mode=True, pnet_tune=False).to( device=pred_imgs.device, dtype=torch.bfloat16) device=pred_imgs.device, dtype=lpips_dtype) self.lpips.append(lpips_eval) test_lpips = [] for pred_imgs_batch, target_...
image_count: 16 num_repeats: 100 shuffle_caption: True keep_tokens: 0 caption_dropout_rate: 0.0 caption_dropout_every_n_epoches: 0 caption_tag_dropout_rate: 0.0 color_aug: False flip_aug: False face_crop_aug_range: None random_crop: False ...