在DFP上有两个CC引脚,DFP通过检测三种不同形式的UFP端下拉电阻(Open开路、Ra=0.8K~1.2K、Rd=5.1K)来识别各种配置模式。 2.识别电缆方向来建立信号路由 连接Type-C电缆可以不区分正反方向,当DFP检测到CC1被下拉,则UFP是向上接入,同样地当检测到CC2被下拉则UFP是向下接入(参考上表)。下图展示了使用高速MUX进行信...
当使用被动线缆(无标记芯片)连接时,DFP设备只能在一个CC引脚上检测到Rd,因为只有CC1 在线缆中被连接,这导致UFP设备可以正常工作。对照表格进行查看: 然而,让我们看看当它连接到一个在 CC2 两端都有Ra电阻的主动USB-C线缆时会发生什么: Resultant configuration with marker cable 在DFP设备端,CC2引脚检测到Ra电阻...
3.2.CC1和CC2的下拉电阻是否能共用一个电阻? 4. Type C 版本 5. 16P 与 12P Type C 接口定义 6. 6P Type C 接口定义 1. Type C 接口特点 Type C 是一组对称的连接器,在使用的过程中不需要如同使用 USBA,MinUSB,MicroUSB 那样来辨别接口方向。其次能够承受较高的功率所以可以支持高达 100W 的功率,所...
在DFP上有两个CC引脚,DFP通过检测三种不同形式的UFP端下拉电阻(Open开路、Ra=0.8-1.2K、Rd=5.1K)来识别各种配置模式。 具体CC1/2上检测到不同下拉组合的配置如下: 识别电缆方向 USB Type-C连接器没有方向要求,可以支持正插和反插,但对于设计者,则需要识别电缆的方向,来建立正确的信号连接。并且对于USB 3.2 ...
翻译自: http://kevinzhengwork./2014/09/usb-type-c-configuration-channel-cc-pin.html 1.插入检测 DFP(下行端口)为主机端口,UFP(上行端口)为设备端口。如图所示,在DFP中的CC通道上有上拉电阻,相应的在UFP中有对应的下拉电阻。在DFP与UFP连接之前,VBUS没有输出,当两者连接之后,DFP检测到CC引脚的电平被拉低...
因此,该保护应被视为 CC 电流检测和输入电流限制的备用电路,而不是主保护电路。请注意,简单的电阻下拉方法可用于电流消耗不超过 1.5A 并提供 BC1.2 检测的接收端应用(见下文)。2. BC1.2 和私有充电器检测:当供电端即没有 USB Type-C 连接器(传统电源),也不能提供小于 1.5 A 的电流时,BC1....
CC信号有两根线,CC1和CC2,大部分USB线(不带芯片的线缆)里面只有一根CC线,DFP可根据两根CC线上的电压,判断是否已经插入设备。通过判断哪根CC线上有下拉电阻来判断方向,下图的说明已经非常清晰。 如果CC1引脚检测到有效的Rp/Rd连接(对应的电压),则认为电缆连接未翻转。如果CC2引脚检测到有效的Rp/Rd连接(对应的电压...
根据Type-C Spec R2.0 Chap 4.5,CC的主要功能包括:插入检测 DFP为主机端口,UFP为设备端口,USB Type-C引入了powered cable,可能需要单独供电。在经典连接中,DFP检测到三种不同的UFP端下拉电阻(Open开路、Ra=0.8-1.2K、Rd=5.1K)来识别不同的配置模式。识别电缆方向 USB Type-C连接器没...
正反向检测在USB Type-C的连接中,CC1和CC2引脚用于正反向检测:如果CC1检测到有效的上下拉(即检测到Rp),则表示连接为正向。如果CC1没有检测到有效的上下拉,但CC2检测到了,则表示连接为反向。具体步骤1、连接时:DFP通过上拉电阻(Rp)将CC1和CC2引脚分别上拉至3.3V或5V。UFP通过下拉电阻(...
对于双角色端口,CC1和CC2上会在Rp上拉状态和Rd下拉这两种状态中不断地切换。 用电端下拉电阻Rd固定为5.1KΩ。供电端通过三种方案来广播不同供电能力,上拉电阻Rp数值定义如下表所示。 3.CC识别 3.1 OTG 3.2 E-Marker 3.3 Type-C接口耳机